ترغب بنشر مسار تعليمي؟ اضغط هنا

The modern merger hypothesis offers a method of forming a new elliptical galaxy through merging two equal-mass, gas-rich disk galaxies fuelling a nuclear starburst followed by efficient quenching and dynamical stabilization. A key prediction of this scenario is a central concentration of young stars during the brief phase of morphological transformation from highly-disturbed remnant to new elliptical galaxy. To test this aspect of the merger hypothesis, we use integral field spectroscopy to track the stellar Balmer absorption and 4000AA break strength indices as a function of galactic radius for 12 massive (${rm M_{*}}ge10^{10}{rm M_{odot}}$), nearby (${rm z}le0.03$), visually-selected plausible new ellipticals with blue-cloud optical colours and varying degrees of morphological peculiarities. We find that these index values and their radial dependence correlate with specific morphological features such that the most disturbed galaxies have the smallest 4000AA break strengths and the largest Balmer absorption values. Overall, two-thirds of our sample are inconsistent with the predictions of the modern merger hypothesis. Of these eight, half exhibit signatures consistent with recent minor merger interactions. The other half have star formation histories similar to local, quiescent early-type galaxies. Of the remaining four galaxies, three have the strong morphological disturbances and star-forming optical colours consistent with being remnants of recent, gas-rich major mergers, but exhibit a weak, central burst consistent with forming $sim5%$ of their stars. The final galaxy possesses spectroscopic signatures of a strong, centrally-concentrated starburst and quiescent core optical colours indicative of recent quenching (i.e., a post-starburst signature) as prescribed by the modern merger hypothesis.
We study the relationship between the structure and star-formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Ne ar Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z~1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z~2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise due to a more pronounced bulge in AGN hosts or due to extinguished nuclear light. We undertake a number of tests of these alternatives, but our results do not strongly favour one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z>1.5. At z<1, however, clear and significant enhancements are seen in the SFRs of AGNs with bulge-dominated light profiles. These trends suggest an evolution in the relation between nuclear activity and host properties with redshift, towards a minor role for mergers and interactions at z>1.5.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا