ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze thermally induced spin and charge transport in HgTe/CdTe quantum wells on the basis of the numerical non-equilibrium Greens function technique in the linear response regime. In the topologically non-trivial regime, we find a clear signatur e of the gap of the edge states due to their finite overlap from opposite sample boundaries -- both in the charge Seebeck and spin Nernst signal. We are able to fully understand the physical origin of the thermoelectric transport signatures of edge and bulk states based on simple analytical models. Interestingly, we derive that the spin Nernst signal is related to the spin Hall conductance by a Mott-like relation which is exact to all orders in the temperature difference between the warm and the cold reservoir.
Using $vec{k}$$cdot$$vec{p}$ theory, we derive an effective four band model describing the physics of the typical two-dimensional topological insulator (HgTe/CdTe quantum well) in the presence of out-of-plane in z-direction inversion breaking and in- plane confining potentials. We find that up to third order in perturbation theory, only the inversion breaking potential generates new elements to the four band Hamiltonian that are off-diagonal in spin space. When this new effective Hamiltonian is folded into an effective two band model for the conduction (electron) or valence (heavy hole) bands, two competing terms appear: (1) a Rashba spin-orbit interaction originating from inversion breaking potential in z-direction and (2) an in-plane Pauli term as a consequence of the in-plane confining potential. Spin transport in the conduction band is further analysed within the Landauer-Buttiker formalism. We find that for asymmetrically doped HgTe quantum wells, the behaviour of the spin-Hall conductance is dominated by the Rashba term.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا