ترغب بنشر مسار تعليمي؟ اضغط هنا

Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region a round $Z=82$ and the neutron mid-shell at $N=104$. Purpose: Evidence for shape coexistence has been inferred from $alpha$-decay measurements, laser spectroscopy and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of $^{202}$Rn and $^{204}$Rn were studied by means of low-energy Coulomb excitation at the REX-ISOLDE facility in CERN. Results: The electric-quadrupole ($E2$) matrix element connecting the ground state and first-excited $2^{+}_{1}$ state was extracted for both $^{202}$Rn and $^{204}$Rn, corresponding to ${B(E2;2^{+}_{1} to 2^{+}_{1})=29^{+8}_{-8}}$ W.u. and $43^{+17}_{-12}$ W.u., respectively. Additionally, $E2$ matrix elements connecting the $2^{+}_{1}$ state with the $4^{+}_{1}$ and $2^{+}_{2}$ states were determined in $^{202}$Rn. No excited $0^{+}$ states were observed in the current data set, possibly due to a limited population of second-order processes at the currently-available beam energies. Conclusions: The results are discussed in terms of collectivity and the deformation of both nuclei studied is deduced to be weak, as expected from the low-lying level-energy schemes. Comparisons are also made to state-of-the-art beyond-mean-field model calculations and the magnitude of the transitional quadrupole moments are well reproduced.
57 - P. Rahkila 2010
Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This stud y lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Beyond mean-field calculations are in reasonable correspondence with the trends deduced from experiment.
The technique of recoil beta tagging has been developed which allows prompt gamma decays in nuclei from excited states to be correlated with electrons from their subsequent short-lived beta decay. This technique is ideal for studying nuclei very far from stability and improves in sensitivity for very short-lived decays and for high decay Q-values. The method has allowed excited states in 78Y to be observed for the first time, as well as an extension in the knowledge of T=1 states in 74Rb. From this new information it has been possible to compare Coulomb energy differences (CED) between T=1 states in 70Br/70Se, 74Rb/74Kr, and 78Y/78Sr. The A=70 CED exhibit an anomalous behavior which is inconsistent with all other known CED. This behavior may be accounted for qualitatively in terms of small variations in the Coulomb energy arising from shape changes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا