ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave sp ectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.
We present a realisation of high bandwidth instrumentation at cryogenic temperatures and for dilution refrigerator operation that possesses advantages over methods using radio-frequency single electron transistor or transimpedance amplifiers. The abi lity for the low temperature electronics to carry out faster measurements than with room temperature electronics is investigated by the use of a phosphorous-doped single-electron transistor. A single-shot technique is successfully implemented and used to observe the real time decay of a quantum state. A discussion on various measurement strategies is presented and the consequences on electron heating and noise are analysed.
We have fabricated a custom cryogenic Complementary Metal-Oxide-Semiconductor (CMOS) integrated circuit that has a higher measurement bandwidth compared with conventional room temperature electronics. This allowed implementing single shot operations and observe the real-time evolution of the current of a phosphorous-doped silicon single electron transistor that was irradiated with a microwave pulse. Relaxation times up to 90 us are observed, suggesting the presence of well isolated electron excitations within the device. It is expected that these are associated with long decoherence time and the device may be suitable for quantum information processing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا