ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a numerical simulation of the rate of crystal nucleation of sodium chloride from its melt at moderate supercooling. In this regime nucleation is too slow to be studied with brute-force Molecular Dynamics simulations. The melting temperature of (Tosi-Fumi) NaCl is $sim 1060$K. We studied crystal nucleation at $T$=800K and 825K. We observe that the critical nucleus formed during the nucleation process has the crystal structure of bulk NaCl. Interestingly, the critical nucleus is clearly faceted: the nuclei have a cubical shape. We have computed the crystal-nucleation rate using two completely different approaches, one based on an estimate of the rate of diffusive crossing of the nucleation barrier, the other based on the Forward Flux Sampling and Transition Interface Sampling (FFS-TIS) methods. We find that the two methods yield the same result to within an order of magnitude. However, when we compare the extrapolated simulation data with the only available experimental results for NaCl nucleation, we observe a discrepancy of nearly 5 orders of magnitude. We discuss the possible causes for this discrepancy.
The smallest maximum kissing-number Voronoi polyhedron of 3d spheres is the icosahedron and the tetrahedron is the smallest volume that can show up in Delaunay tessalation. No periodic lattice is consistent with either and hence these dense packings are geometrically frustrated. Because icosahedra can be assembled from almost perfect tetrahedra, the terms icosahedral and polytetrahedral packing are often used interchangeably, which leaves the true origin of geometric frustration unclear. Here we report a computational study of freezing of 4d hard spheres, where the densest Voronoi cluster is compatible with the symmetry of the densest crystal, while polytetrahedral order is not. We observe that, under otherwise comparable conditions, crystal nucleation in 4d is less facile than in 3d. This suggest that it is the geometrical frustration of polytetrahedral structures that inhibits crystallization.
We discuss an implementation of molecular dynamics (MD) simulations on a graphic processing unit (GPU) in the NVIDIA CUDA language. We tested our code on a modern GPU, the NVIDIA GeForce 8800 GTX. Results for two MD algorithms suitable for short-rang ed and long-ranged interactions, and a congruential shift random number generator are presented. The performance of the GPUs is compared to their main processor counterpart. We achieve speedups of up to 80, 40 and 150 fold, respectively. With newest generation of GPUs one can run standard MD simulations at 10^7 flops/$.
We report extensive simulations of the relaxation dynamics of a self-avoiding polymer confined inside a cylindrical pore. In particular, we concentrate on examining how confinement influences the scaling behavior of the global relaxation time of the chain, t, with the chain length N and pore diameter D. An earlier scaling analysis based on the de Gennes blob picture led to t ~ N^2D^(1/3). Our numerical effort that combines molecular dynamics and Monte Carlo simulations, however, consistently produces different t-results for N up to 2000. We argue that the previous scaling prediction is only asymptotically valid in the limit N >> D^(5/3) >> 1, which is currently inaccessible to computer simulations and, more interestingly, is also difficult to reach in experiments. Our results are thus relevant for the interpretation of recent experiments with DNA in nano- and micro-channels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا