ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering and studying few-electron states in ballistic conductors is a key step towards understanding entanglement in quantum electronic systems. In this Letter, we introduce the intrinsic two-electron coherence of an electronic source in quantum Hall edge channels and relate it to two-electron wavefunctions and to current noise in an Hanbury Brown--Twiss interferometer. Inspired by the analogy with photon quantum optics, we propose to measure the intrinsic two-electron coherence of a source using low-frequency current correlation measurements at the output of a Franson interferometer. To illustrate this protocol, we discuss how it can distinguish between a time-bin entangled pure state and a statistical mixture of time shifted electron pairs.
We propose a device consisting in an antidot periodically driven in time by a magnetic field as a fractional quantum Hall counterpart of the celebrated mesoscopic capacitor-based single electron source. We fully characterize the setup as an ideal emi tter of individual quasiparticles and electrons into fractional quantum Hall edge channels of the Laughlin sequence. Our treatment relies on a master equation approach and identifies the optimal regime of operation for both types of sources. The quasiparticle/quasihole emission regime involves in practice only two charge states of the antidot, allowing for an analytic treatment. We show the precise quantization of the emitted charge, we determine its optimal working regime, and we compute the phase noise/shot noise crossover as a function of the escape time from the emitter. The emission of electrons, which calls for a larger amplitude of the drive, requires a full numerical treatment of the master equations as more quasiparticle charge states are involved. Nevertheless, in this case the emission of one electron charge followed by one hole per period can also be achieved, and the overall shape of the noise spectrum is similar to that of the quasiparticle source, but the presence of additional quasiparticle processes enhances the noise amplitude.
We study the finite frequency (F.F.) noise properties of edge states in the Laughlin state. We investigate the model of a resonant detector coupled to a quantum point contact in the weak-backscattering limit. In particular we discuss the impact of po ssible renormalization of the Luttinger exponent, due to environmental effects, on the measured quantities and we propose a simple way to extract such non-universal parameters from noise measurements.
We consider a device which allows to create and probe single Majorana fermions, in the form of Bogoliubov quasiparticles. It is composed of two counter-propagating edge channels, each put in proximity with a superconducting region where Andreev refle ction operates, and which thus converts electrons into Bogoliubov quasiparticles. The edge channels then meet at a quantum point contact where collisions can be achieved. A voltage biased version of the setup was studied in Phys. Rev. Lett. 112, 070604 (2014) and showed non-local interference phenomena and signatures of Bogoliubov quasiparticle collisions in the high frequency noise characteristics at the output, constituting an evidence of the Majorana fermion nature of these excitations. Here, voltage biased leads are replaced by single electron sources in order to achieve collisions of single Bogoliubov quasiparticles, with the major advantage that zero-frequency noise measurements are sufficient to access the intimate nature of Bogoliubov wave-packets. We compute the injection parameters of the source, and go on to investigate the Hanbury-Brown and Twiss and Hong-Ou-Mandel signal at the output, as a function of the mixing angle which controls the electron/hole component of the Bogoliubov wave-packet. In particular, information on the internal structure of the Bogoliubov quasiparticle can be recovered when such a quasiparticle collides with a pure electron. Experimental feasibility with singlet or triplet superconductors is discussed.
Quantum Hall edge channels at integer filling factor provide a unique test-bench to understand decoherence and relaxation of single electronic excitations in a ballistic quantum conductor. In this Letter, we obtain a full visualization of the decoher ence scenario of energy (Landau) and time (Levitov) resolved single electron excitations at filling factor $ u=2$. We show that the Landau excitation exhibits a fast relaxation followed by spin-charge separation whereas the Levitov excitation only experiences spin-charge separation. We finally suggest to use Hong-Ou-Mandel type experiments to probe specific signatures of these different scenarios.
We investigate the finite frequency (f.f.) noise properties of edge states in the quantum Hall regime. We consider the measurement scheme of a resonant detector coupled to a quantum point contact in the weak-backscattering limit. A detailed analysis of the difference between the measured noise, due to the presence of the resonant detector, and the symmetrized f.f. noise is presented. We discuss both the Laughlin and Jain sequences, studying the tunnelling excitations in these hierarchical models. We argue that the measured noise can better distinguish between the different excitations in the tunnelling process with respect to the symmetrized f.f. counterpart in an experimentally relevant range of parameters. Finally, we illustrate the effect of the detector temperature on the sensibility of this measure.
120 - D. Ferraro , C. Wahl , J. Rech 2013
The edge states of a two-dimensional topological insulator are characterized by their helicity, a very remarkable property which is related to the time-reversal symmetry and the topology of the underlying system. We theoretically investigate a Hong-O u-Mandel like setup as a tool to probe it. Collisions of two electrons with the same spin show a Pauli dip, analogous to the one obtained in the integer quantum Hall case. Moreover, the collisions between electrons of opposite spin also lead to a dip, known as $mathbb{Z}_{2}$ dip, which is a direct consequence of the constraints imposed by time-reversal symmetry. In contrast to the integer quantum Hall case, the visibility of these dips is reduced by the presence of the additional edge channels, and crucially depends on the properties of the quantum point contact. As a unique feature of this system, we show the possibility of three-electron interference, which leads to a total suppression of the noise independently of the point contact configuration. This is assured by the peculiar interplay between Fermi statistics and topology. This work intends to extend the domain of applicability of electron quantum optics.
Recent electron quantum optics experiments performed with on-demand single electron sources call for a mixed time/frequency approach to electronic quantum coherence. Here, we present a Wigner function representation of first order electronic coherenc e and show that is provides a natural visualization of the excitations emitted by recently demonstrated single electron sources. It also gives a unified perspective on single particle and two particle interferometry experiments. In particular, we introduce a non-classicality criterion for single electron coherence and discuss it in the context of Mach-Zenhder interferometry. Finally, the electronic Hanbury Brown and Twiss and the Hong Ou Mandel experiments are interpreted in terms of overlaps of Wigner function thus connecting them to signal processing.
We propose a general mechanism for renormalization of the tunneling exponents in edge states of the fractional quantum Hall effect. Mutual effects of the coupling with out-of-equilibrium 1/f noise and dissipation are considered both for the Laughlin sequence and for composite co- and counter-propagating edge states with Abelian or non-Abelian statistics. For states with counter-propagating modes we demonstrate the robustness of the proposed mechanism in the so called disorder-dominated phase. Prototypes of these states, such as u=2/3 and u=5/2, are discussed in detail and the rich phenomenology induced by the presence of a noisy environment is presented. The proposed mechanism justifies the strong renormalizations reported in many experimental observations carried out at low temperatures. We show how environmental effects could affect the relevance of the tunneling excitations, leading to important implications in particular for the u=5/2 case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا