ترغب بنشر مسار تعليمي؟ اضغط هنا

53 - Z. B. Tan , D. Cox , T. Nieminen 2014
Split Cooper pair is a natural source for entangled electrons which is a basic ingredient for quantum information in solid state. We report an experiment on a superconductor-graphene double quantum dot (QD) system, in which we observe Cooper pair spl itting (CPS) up to a CPS efficiency of ~ 10%. With bias on both QDs, we are able to detect a positive conductance correlation across the two distinctly decoupled QDs. Furthermore, with bias only on one QD, CPS and elastic co-tunneling can be distinguished by tuning the energy levels of the QDs to be asymmetric or symmetric with respect to the Fermi level in the superconductor.
Nonlinear optical processes rely on the intrinsically weak interactions between photons enabled by their coupling with matter. Unfortunately, many applications in nonlinear optics are severely hindered by the small response of conventional materials. Metallic nanostructures partially alleviate this situation, as the large light enhancement associated with their localized plasmons amplifies their nonlinear response to record high levels. Graphene hosts long-lived, electrically tunable plasmons that also interact strongly with light. Here we show that the nonlinear polarizabilities of graphene nanoislands can be electrically tuned to surpass by several orders of magnitude those of metal nanoparticles of similar size. This extraordinary behavior extends over the visible and near-infrared for islands consisting of hundreds of carbon atoms doped with moderate carrier densities. Our quantum-mechanical simulations of the plasmon-enhanced optical response of nanographene reveal this material as an ideal platform for the development of electrically tunable nonlinear optical nanodevices.
One of the goals of the ICML workshop on representation and learning is to establish benchmark scores for a new data set of labeled facial expressions. This paper presents the performance of a Null model consisting of convolutions with random weights , PCA, pooling, normalization, and a linear readout. Our approach focused on hyperparameter optimization rather than novel model components. On the Facial Expression Recognition Challenge held by the Kaggle website, our hyperparameter optimization approach achieved a score of 60% accuracy on the test data. This paper also introduces a new ensemble construction variant that combines hyperparameter optimization with the construction of ensembles. This algorithm constructed an ensemble of four models that scored 65.5% accuracy. These scores rank 12th and 5th respectively among the 56 challenge participants. It is worth noting that our approach was developed prior to the release of the data set, and applied without modification; our strong competition performance suggests that the TPE hyperparameter optimization algorithm and domain expertise encoded in our Null model can generalize to new image classification data sets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا