ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.
The idea to utilize not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (10$^{12}$ Hz) emission spectroscopy, we demonstrate optical generation of spin-polarized electric currents at the interfaces of metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.
The age distribution of the central stars of planetary nebulae (CSPN) is estimated using two methods based on their kinematic properties. First, the expected rotation velocities of the nebulae at their Galactocentric distances are compared with the p redicted values for the rotation curve, and the differences are attributed to the different ages of the evolved stars. Adopting the relation between the ages and the velocity dispersions determined by the Geneva-Copenhagen survey, the age distribution can be derived. Second, the U, V, W, velocity components of the stars are determined, and the corresponding age-velocity dispersion relations are used to infer the age distribution. These methods have been applied to two samples of PN in the Galaxy. The results are similar for both samples, and show that the age distribution of the PN central stars concentrates in ages lower than 5 Gyr, peaking at about 1 to 3 Gyr.
146 - G. Munao , D. Costa , C. Caccamo 2008
Thermodynamic and structural properties of the tangent diatomic fluid are studied in the framework provided by the Reference Interaction Site Model (RISM) theory, coupled with a Modified Hypernetted Chain closure. The enforcement of the internal ther modynamic consistency of the theory is described in detail. The results we obtain almost quantitatively agree with available or newly generated simulation data. We envisage the possibility to extend the consistent RISM formalism to generic, more realistic molecular fluids.
Recent investigations on the central stars of planetary nebulae (CSPN) indicate that the masses based on model atmospheres can be much larger than the masses derived from theoretical mass-luminosity relations. Also, the dispersion in the relation bet ween the modified wind momentum and the luminosity depends on the mass spread of the CSPN, and is larger than observed in massive hot stars. Since the wind characteristics probably depend on the metallicity, we analyze the effects on the modified wind momentum by considering the dispersion in this quantity caused by the stellar metallicity. Our CSPN masses are based on a relation between the core mass and the nebular abundances. We conclude that these masses agree with the known mass distribution both for CSPN and white dwarfs, and that the spread in the modified wind momentum can be explained by the observed metallicity variations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا