ترغب بنشر مسار تعليمي؟ اضغط هنا

We present photometry and spectropolarimetry of the pre-main sequence star HD 106506. A photometric rotational period of ~1.416 +/- 0.133 days has been derived using observations at Mount Kent Observatory (MKO). Spectropolarimetric data taken at the 3.9-m Anglo-Australian Telescope (AAT) were used to derive spot occupancy and magnetic maps of the star through the technique of Zeeman Doppler imaging (ZDI). The resulting brightness maps indicate that HD 106506 displays photospheric spots at all latitudes including a predominant polar spot. Azimuthal and radial magnetic images of this star have been derived, and a significant azimuthal magnetic field is indicated, in line with other active young stars. A solar-like differential rotation law was incorporated into the imaging process. Using Stokes I information the equatorial rotation rate, $Omega_{eq}$, was found to be 4.54 +/- 0.01 rad/d, with a photospheric shear $deltaOmega$ of $0.21_{-0.03}^{+0.02}$ rad/d. This equates to an equatorial rotation period of ~1.39 +/- 0.01 days, with the equatorial region lapping the poles every ~$30_{-3}^{+5}$ days. Using the magnetic features, the equatorial rotation rate, $Omega_{eq}$, was found to be 4.51 +/- 0.01 rad/d, with a photospheric shear $deltaOmega$ of 0.24 +/- 0.03 rad/d. This differential rotation is approximately 4 times that observed on the Sun.
In this paper we present chromospheric emission levels of the solar-type stars in the young open clusters IC 2391 and IC 2602. High resolution spectroscopic data were obtained for over 50 F, G, and K stars from these clusters over several observing c ampaigns using the University College London Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Unlike older clusters, the majority (28/52) of the solar-type stars in the two clusters are rapid-rotators (vsini > 20 km/s) with five of the stars being classified as ultra-rapid rotators (vsini > 100 km/s). The emission levels in the Calcium infrared triplet lines were then used as a measure of the chromospheric activity of the stars. When plotted against Rossby number (NR) the stars chromospheric emission levels show a plateau in the emission for Log(NR) < -1.1 indicating chromospheric saturation similar to the coronal saturation seen in previously observed X-ray emission from the same stars. However, unlike the coronal emission, the chromospheric emission of the stars show little evidence of a reduction in emission (i.e. supersaturation) for the ultra-rapid rotators in the clusters. Thus we believe that coronal supersaturation is not the result of an overall decrease in magnetic dynamo efficiency for ultra-rapid rotators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا