ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - D. Caprioli 2009
Stationary solutions to the problem of particle acceleration at shock waves in the non-linear regime, when the dynamical reaction of the accelerated particles on the shock cannot be neglected, are known to show a prominent energy flux escaping from t he shock towards upstream infinity. On physical grounds, the escape of particles from the upstream region of a shock has to be expected in all those situations in which the maximum momentum of accelerated particles, $p_{max}$, decreases with time, as is the case for the Sedov-Taylor phase of expansion of a shell Supernova Remnant, when both the shock velocity and the cosmic ray induced magnetization decrease. In this situation, at each time $t$, particles with momenta larger than $p_{max}(t)$ leave the system from upstream, carrying away a large fraction of the energy if the shock is strongly modified by the presence of cosmic rays. This phenomenon is of crucial importance for explaining the cosmic ray spectrum detected at Earth. In this paper we discuss how this escape flux appears in the different approaches to non-linear diffusive shock acceleration, and especially in the quasi-stationary semi-analytical kinetic ones. We apply our calculations to the Sedov-Taylor phase of a typical supernova remnant, including in a self-consistent way particle acceleration, magnetic field amplification and the dynamical reaction on the shock structure of both particles and fields. Within this framework we calculate the temporal evolution of the maximum energy reached by the accelerated particles and of the escape flux towards upstream infinity. The latter quantity is directly related to the cosmic ray spectrum detected at Earth.
85 - D. Caprioli 2009
We present a semi-analytical kinetic calculation of the process of non-linear diffusive shock acceleration (NLDSA) which includes the magnetic field amplification due to cosmic ray induced streaming instability, the dynamical reaction of the amplifie d magnetic field and the possible effects of turbulent heating. The approach is specialized to parallel shock waves and the parameters we chose are the ones appropriate to forward shocks in Supernova Remnants. Our calculation allows us to show that the net effect of the amplified magnetic field is to enhance the maximum momentum of accelerated particles while reducing the concavity of the spectra, with respect to the standard predictions of NLDSA. This is mainly due to the dynamical reaction of the amplified field on the shock, which noticeably reduces the modification of the shock precursor. The total compression factors which are obtained for parameters typical of supernova remnants are $R_{tot}sim 7-10$, in good agreement with the values inferred from observations. The strength of the magnetic field produced through excitation of streaming instability is found in good agreement with the values inferred for several remnants if the thickness of the X-ray rims are interpreted as due to severe synchrotron losses of high energy electrons. We also discuss the relative role of turbulent heating and magnetic dynamical reaction in driving the reduction of the precursor modification.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا