ترغب بنشر مسار تعليمي؟ اضغط هنا

We revisit the discovery outburst of the X-ray transient XTE J1550-564 during which relativistic jets were observed in 1998 September, and review the radio images obtained with the Australian Long Baseline Array, and lightcurves obtained with the Mol onglo Observatory Synthesis Telescope and the Australia Telescope Compact Array. Based on HI spectra, we constrain the source distance to between 3.3 and 4.9 kpc. The radio images, taken some two days apart, show the evolution of an ejection event. The apparent separation velocity of the two outermost ejecta is at least 1.3c and may be as large as 1.9c; when relativistic effects are taken into account, the inferred true velocity is >0.8c. The flux densities appear to peak simultaneously during the outburst, with a rather flat (although still optically thin) spectral index of -0.2.
(abridged) This is the second paper presenting the results of two years of monitoring of GRS 1915+105 with integral and rxte and the Ryle Telescope. We present the X-ray spectral and temporal analysis of four observations which showed strong radio to X-ray correlations. During one observation GRS 1915+105 was in a steady state, while during the three others it showed cycles of X-ray dips and spikes (followed by radio flares). We present the time-resolved spectroscopy of these cyclesand show that in all cases the hard X-ray component (the Comptonized emission from a coronal medium) is suppressed in coincidence with a soft X-ray spike that ends the cycle. We interpret these results as evidence that the soft X-ray spike is the trigger of the ejection, and that the ejected medium is the coronal material. In the steady state observation, the X-ray spectrum is indicative of the hard-intermediate state, with the presence of a relatively strong emission at 15 GHz. The X-ray spectra are the sum of a Comptonized component and an extra power law extending to energies >200 keV without any evidence for a cut-off. We observe a possible correlation of the radio flux with that of the power law component, which may indicate that we see direct emission from the jet at hard X-ray energies. We study the energy dependence of a ~4 Hz QPO during the hard-intermediate state observation. The QPO-``spectrum is well modeled by a power law with a cut-off at an energy about 11 keV that clearly differs from the relative contribution of the Comptonized component to the overall flux. This may rule out models of global oscillations of the Compton corona.
Aims: In this paper we study whether the shock-in-jet model, widely used to explain the outbursting behaviour of quasars, can be used to explain the radio flaring behaviour of the microquasar Cygnus X-3. Method: We have used a method developed to m odel the synchrotron outbursts of quasar jets, which decomposes multifrequency lightcurves into a series of outbursts. The method is based on the Marscher & Gear (1985) shock model, but we have implemented the modifications to the model suggested by Bjornsson & Aslaksen (2000), which make the flux density increase in the initial phase less abrupt. We study the average outburst evolution as well as specific characteristics of individual outbursts and physical jet properties of Cyg X-3. Results: We find that the lightcurves of the February-March 1994 and September 2001 outbursts can be described with the modified shock model. The average evolution shows that instead of the expected synchrotron plateau, the flux density is still increasing during the synchrotron stage. We also find that high frequency peaking outbursts are shorter in duration than the ones peaking at lower frequencies. Finally, we show that the method can be used, complementary to radio interferometric jet imaging, for deriving the physical parameters such as the magnetic field strength and the energy density of relativistic electrons in the jet of Cyg X-3.
133 - D. C. Hannikainen 2007
The INTEGRAL observatory has been (re-)discovering new X-ray sources since the beginning of nominal operations in early 2003. These sources include X-ray binaries, Active Galactic Nuclei, cataclysmic variables, etc. Amongst the X-ray binaries, the tr ue nature of many of these sources has remained largely elusive, though they seem to make up a population of highly absorbed high-mass X-ray binaries. One of these new sources, IGR J19140+0951, was serendipitously discovered on 2003 Mar 6 during an observation of the galactic microquasar GRS 1915+105. We observed IGR J19140+0951 with UKIRT in order to identify the infrared counterpart. Here we present the H- and K-band spectra. We determined that the companion is a B0.5-type bright supergiant in a wind-fed system, at a distance $la$ 5 kpc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا