ترغب بنشر مسار تعليمي؟ اضغط هنا

37 - D. Basu 2009
The redshifts of the gamma ray burst (GRB) GRB 011211 has been determined as 2.14 from several absorption lines seen in the spectrum of its optical afterglow. The spectrum of its X-ray afterglow exhibited several emission lines,and their identificati on led to a mean redshift 1.862. A supernova model has been proposed based on the redshift of the GRB as 2.141. It is shown here that the redshift interpretation cannot explain the observed spectra, as some serious inconsistencies exist in the process of redshift determinations in spectra of both optical and X-ray afterglows. In view of that, an alternative interpretation of the spectra is presented in terms of blueshifts. Ejection mechanism is proposed as a possible scenario to explain the blueshifted spectrum.
Scaling of semiconductor devices has reached a stage where it has become absolutely imperative to consider the quantum mechanical aspects of transport in these ultra small devices. In these simulations, often one excludes a rigorous band structure tr eatment, since it poses a huge computational challenge. We have proposed here an efficient method for calculating full three-dimensionally coupled quantum transport in nanowire transistors including full band structure. We have shown the power of the method by simulating hole transport in p-type Ge nanowire transistors. The hole band structure obtained from our nearest neighbor sp3s* tight binding Hamiltonian agrees well qualitatively with more complex and accurate calculations that take third nearest neighbors into account. The calculated I-V results show how shifting of the energy bands due to confinement can be accurately captured only in a full band full quantum simulation.
Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal oxide semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state cu rrents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However the bandgap decreases with increasing width, thereby increasing the band-to-band tunneling mediated subthreshold leakage current even with perfect nanoribbons. These results suggest that without atomically precise edge control during fabrication, MOSFET performance gains through use of graphene will be difficult to achieve.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا