ترغب بنشر مسار تعليمي؟ اضغط هنا

Interest in many-core architectures applied to real time selections is growing in High Energy Physics (HEP) experiments. In this paper we describe performance measurements of many-core devices when applied to a typical HEP online task: the selection of events based on the trajectories of charged particles. We use as benchmark a scaled-up version of the algorithm used at CDF experiment at Tevatron for online track reconstruction - the SVT algorithm - as a realistic test-case for low-latency trigger systems using new computing architectures for LHC experiment. We examine the complexity/performance trade-off in porting existing serial algorithms to many-core devices. We measure performance of different architectures (Intel Xeon Phi and AMD GPUs, in addition to NVidia GPUs) and different software environments (OpenCL, in addition to NVidia CUDA). Measurements of both data processing and data transfer latency are shown, considering different I/O strategies to/from the many-core devices.
Interest in parallel architectures applied to real time selections is growing in High Energy Physics (HEP) experiments. In this paper we describe performance measurements of Graphic Processing Units (GPUs) and Intel Many Integrated Core architecture (MIC) when applied to a typical HEP online task: the selection of events based on the trajectories of charged particles. We use as benchmark a scaled-up version of the algorithm used at CDF experiment at Tevatron for online track reconstruction - the SVT algorithm - as a realistic test-case for low-latency trigger systems using new computing architectures for LHC experiment. We examine the complexity/performance trade-off in porting existing serial algorithms to many-core devices. Measurements of both data processing and data transfer latency are shown, considering different I/O strategies to/from the parallel devices.
322 - D. Bastieri 2007
The MAGIC Collaboration is building a second telescope, MAGIC II, improving the design of the current MAGIC Telescope. MAGIC II is being built at 85 m of distance from MAGIC I, and will also feature a huge reflecting surface of ~240 m$^2$ of area. On e of the improvement is the design for the mirror of MAGIC II, that are lighter and larger, being square of 1 m of side and weighting around 15 kg. For the development and production of the new mirrors, two different techniques, both reliable and affordable in price, were selected: the diamond milling of aluminium surfaces and the cold slumping of thin glass panes. As tests for the second one are still ongoing, we present a description of the diamond milling technique, and its application and performance to the produced mirrors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا