ترغب بنشر مسار تعليمي؟ اضغط هنا

Over the past years, the lambda-Orionis cluster has been a prime location for the study of young very low mass stars, substellar and isolated planetary mass objects and the determination of the initial mass function and other properties of low mass c luster members. In the continuity of our previous studies of young associations cores, we search for ultracool members and new multiple systems within the central 5.3 (~0.6pc) of the cluster. We obtained deep seeing limited J, Ks-band images of the 5.3 central part of the cluster with NTT/SofI and H-band images with CAHA/Omega2000. These images were complemented by multi-conjugate adaptive optics (MCAO) H and Ks images of the 1.5 central region of the lambda-Orionis cluster obtained with the prototype MCAO facility MAD at the VLT. The direct vicinity of the massive lambda-Ori O8III-star was probed using NACO/SDI at the VLT. Finally, we also retrieved Spitzer IRAC images of the same area and used archival Subaru Suprime-Cam and CFHT CFHT12K i-band images. We report the detection of 9 new member candidates selected from optical and near-IR color-color and color-magnitude diagrams and 7 previously known members. The high spatial resolution images resolve 3 new visual multiple systems. Two of them are most likely not members of the association. The third one is made of a brown dwarf candidate companion to the F8V star HD36861C. The simultaneous differential images allow us to rule out the presence of visual companions more massive than M>0.07Msun in the range 1-2.5, and M>0.25Msun in the range 0.5-2.5
The physical properties of almost any kind of astronomical object can be derived by fitting synthetic spectra or photometry extracted from theoretical models to observational data. We want to develop an automatic procedure to perform this kind of f ittings to a relatively large sample of members of a stellar association and apply this methodology to the case of Collinder 69. We combine the multiwavelength data of our sources and follow a work-flow to derive the physical parameters of the sources. The key step of the work-flow is performed by a new VO-tool, VOSA. All the steps in this process are done in a VO environment. We present this new tool, and provide physical parameters such as T$_{rm eff}$, gravity, luminosity, etc. for $sim$170 candidate members to Collinder 69, and an upper-limit for the age of this stellar association. This kind of studies of star forming regions, clusters, etc. produces a huge amount of data, very tedious to analyse using the traditional methodology. Thus, they are excellent examples where to apply the VO capabilities.
The physical properties of almost any kind of astronomical object can be derived by fitting synthetic spectra or photometry extracted from theoretical models to observational data. This process usually involves working with multiwavelength data, whic h is one of the cornerstones of the VO philosophy. From this kind of studies, when combining with theoretical isochrones one can even estimate ages. We present here the results obtained from a code designed to perform chi^2 tests to both spectroscopic models (or the associated synthetic photometry) and combinations of blackbodies (including modified blackbodies). Some steps in this process can already be done in a VO environment, and the rest are in the process of development. We must note that this kind of studies in star forming regions, clusters, etc. produce a huge amount of data, very tedious to analyze using the traditional methodology. This make them excellent examples where to apply the VO capabilities.
We look for wide, faint companions around members of the 5 Myr Lambda Orionis open cluster. We used optical, near-infrared, and Spitzer/IRAC photometry. We report the discovery of a very wide very low mass visual binary, LOri167, formed by a brown dw arf and a planetary-mass candidate located at 5 arcsec, which seems to belong to the cluster. We derive Teff of 2125 and 1750 K. If they are members, comparisons with theoretical models indicate masses of 17 (20-15) Mjup and 8 (13-7) Mjup, with a projected separation of 2000 AU. Such a binary system would be difficult to explain in most models, particularly those where substellar objects form in the disks surrounding higher mass stars.
We present multi-wavelength optical and infrared photometry of 170 previously known low mass stars and brown dwarfs of the 5 Myr Collinder 69 cluster (Lambda Orionis). The new photometry supports cluster membership for most of them, with less than 15 % of the previous candidates identified as probable non-members. The near infrared photometry allows us to identify stars with IR excesses, and we find that the Class II population is very large, around 25% for stars (in the spectral range M0 - M6.5) and 40% for brown dwarfs, down to 0.04 Msun, despite the fact that the H(alpha) equivalent width is low for a significant fraction of them. In addition, there are a number of substellar objects, classified as Class III, that have optically thin disks. The Class II members are distributed in an inhomogeneous way, lying preferentially in a filament running toward the south-east. The IR excesses for the Collinder 69 members range from pure Class II (flat or nearly flat spectra longward of 1 micron), to transition disks with no near-IR excess but excesses beginning within the IRAC wavelength range, to two stars with excess only detected at 24 micron. Collinder 69 thus appears to be at an age where it provides a natural laboratory for the study of primordial disks and their dissipation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا