ترغب بنشر مسار تعليمي؟ اضغط هنا

In a previous paper [1], we have discussed the non-perturbative tuning of the chirally rotated Schroedinger functional (XSF). This tuning is required to eliminate bulk O(a) cutoff effects in physical correlation functions. Using our tuning results ob tained in [1] we perform scaling and universality tests analyzing the residual O(a) cutoff effects of several step-scaling functions and we compute renormalization factors at the matching scale. As an example of possible application of the XSF we compute the renormalized strange quark mass using large volume data obtained from Wilson twisted mass fermions at maximal twist.
The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requir es the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to non-perturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit.
Moments of the generalized parton distributions of the nucleon, calculated with a mixed action of domain wall valence quarks and asqtad staggered sea quarks, are presented for pion masses extending down to 359 MeV. Results for the moments of the unpo larized, helicity, and transversity distributions are given and compared to the available experimental measurements. Additionally, a selection of the generalized form factors are shown and the implications for the spin decomposition and transverse structure of the nucleon are discussed. Particular emphasis is placed on understanding systematic errors in the lattice calculation and exploring a variety of chiral extrapolations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا