ترغب بنشر مسار تعليمي؟ اضغط هنا

95 - D. B. Jess 2009
We report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodici ties ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfven waves produced by a torsional twist of +/-22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfven oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar corona.
Fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 A wavelength range. A comparison of these with solar ac tive region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the transition at 195.32 A is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between Ne = 1E8 and 1E13 cm-3, and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine Ne, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 A line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74.
High-cadence optical observations of an H-alpha blue-wing bright point near solar AR NOAA 10794 are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera syste m, the Rapid Dual Imager. Wavelet analysis is undertaken to search for intensity-related oscillatory signatures, and periodicities ranging from 15 to 370 s are found with significance levels exceeding 95%. During two separate microflaring events, oscillation sites surrounding the bright point are observed to twist. We relate the twisting of the oscillation sites to the twisting of physical flux tubes, thus giving rise to reconnection phenomena. We derive an average twist velocity of 8.1 km/s and detect a peak in the emitted flux between twist angles of 180 and 230 degrees.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا