ترغب بنشر مسار تعليمي؟ اضغط هنا

The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.
In radio astronomy, reference signals from auxiliary antennas that receive only the radio frequency interference (RFI) can be modified to model the RFI environment at the astronomy receivers. The RFI can then be canceled from the astronomy signal pat hs. However, astronomers typically only require signal statistics. If the RFI statistics are changing slowly, the cancellation can be applied to the signal correlations at a much lower rate than is required for standard adaptive filters. In this paper we describe five canceler setups; precorrelation and postcorrelation cancelers that use one or two reference signals in different ways. The theoretical residual RFI and added noise levels are examined and are demonstrated using microwave television RFI at the Australia Telescope Compact Array. The RFI is attenuated to below the system noise, a reduction of at least 20 dB. While dual-reference cancelers add more reference noise than single-reference cancelers, this noise is zero-mean and only adds to the system noise, decreasing the sensitivity. The residual RFI that remains in the output of single-reference cancelers (but not dual-reference cancelers) sets a nonzero noise floor that does not act like random system noise and may limit the achievable sensitivity. Thus, dual-reference cancelers often result in superior cancellation. Dual-reference precorrelation cancelers require a double-canceler setup to be useful and to give equivalent results to dual-reference postcorrelation cancelers.
We investigate characteristics of radio frequency interference (RFI) signals that can affect the excision potential of some interference mitigation algorithms. The techniques considered are those that modify signals from auxiliary reference antennas to model and cancel interference from an astronomical observation. These techniques can be applied in the time domain, where the RFI voltage is modeled and subtracted from the astronomy signal path (adaptive noise canceling), or they can be applied to the autocorrelated and cross-correlated voltage spectra in the frequency domain (postcorrelation canceling). For ideal receivers and a single, statistically stationary interfering signal, both precorrelation and postcorrelation filters can result in complete cancellation of the interference from the observation. The postcorrelation method has the advantage of being applied on tens or hundreds of millisecond timescales rather than tens or hundreds of nanosecond timescales. However, this can be a disadvantage if the RFI transmitter location is changing, since the cross-correlated power measurements which link the interference power in the astronomy and reference signal paths can decorrelate. If the decorrelation is not too severe, it can be allowed for, at the expense of a noise increase. The time domain adaptive cancelers are allowed to slightly vary their internal coefficients and adapt to changing phases during the integrations, which means that they avoid the decorrelation problem. However, the freedom to adapt also results in a noise increase. In this paper the ability of both types of cancelers to excise interference originating from a moving source is compared. The cancelers perform well on both observed and simulated data, giving complete cancellation.
48 - D. A. Mitchell 2008
The interferometric technique known as peeling addresses many of the challenges faced when observing with low-frequency radio arrays, and is a promising tool for the associated calibration systems. We investigate a real-time peeling implementation fo r next-generation radio interferometers such as the Murchison Widefield Array (MWA). The MWA is being built in Australia and will observe the radio sky between 80 and 300 MHz. The data rate produced by the correlator is just over 19 GB/s (a few Peta-Bytes/day). It is impractical to store data generated at this rate, and software is currently being developed to calibrate and form images in real time. The software will run on-site on a high-throughput real-time computing cluster at several tera-flops, and a complete cycle of calibration and imaging will be completed every 8 seconds. Various properties of the implementation are investigated using simulated data. The algorithm is seen to work in the presence of strong galactic emission and with various ionospheric conditions. It is also shown to scale well as the number of antennas increases, which is essential for many upcoming instuments. Lessons from MWA pipeline development and processing of simulated data may be applied to future low-frequency fixed dipole arrays.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا