ترغب بنشر مسار تعليمي؟ اضغط هنا

The energy injection model is usually proposed to interpret the shallow-decay phase in Swift GRB X-ray afterglows. However, very few GRBs have simultaneous signatures of energy injection in their optical and X-ray afterglows. Here, we report optical observations of GRB 090529A from 2000 sec to $sim10^6$ sec after the burst, in which an achromatic decay is seen at both wavelengths. The optical light curve shows a decay from 0.37 to 0.99 with a break at $sim10^5$ sec. In the same time interval, the decay indices of the X-ray light curve changed from 0.04 to 1.2. Comparing these values with the closure relations, the segment after 3$times10^{4}$ sec is consistent with the prediction of the forward shock in an ISM medium without any energy injection. The shallow-decay phase between 2000 to 3$times10^{4}$ sec could be due to the external shock in a wind-type-like medium with an energy injection under the condition of $ u_o < u_c < u_x$. However, the constraint of the spectral region is not well consistent with the multi-band observations. For this shallow-decay phase, other models are also possible, such as energy injection with evolving microphysical parameters, or a jet viewed off-axis,etc.
77 - D. A. Kann , S. Klose , B. Zhang 2011
We use a large sample of GRB afterglow and prompt-emission data (adding further GRB afterglow observations in this work) to compare the optical afterglows (or the lack thereof) of Type I GRBs with those of Type II GRBs. In comparison to the afterglow s of Type II GRBs, we find that those of Type I GRBs have a lower average luminosity and show an intrinsic spread of luminosities at least as wide. From late and deep upper limits on the optical transients, we establish limits on the maximum optical luminosity of any associated supernova, confirming older works and adding new results. We use deep upper limits on Type I GRB optical afterglows to constrain the parameter space of possible mini-SN emission associated with a compact-object merger. Using the prompt emission data, we search for correlations between the parameters of the prompt emission and the late optical afterglow luminosities. We find tentative correlations between the bolometric isotropic energy release and the optical afterglow luminosity at a fixed time after trigger (positive), and between the host offset and the luminosity (negative), but no significant correlation between the isotropic energy release and the duration of the GRBs. We also discuss three anomalous GRBs, GRB 060505, GRB 060614, and GRB 060121, in the light of their optical afterglow luminosities. (Abridged)
Aims: With this paper we want to investigate the highly variable afterglow light curve and environment of gamma-ray burst (GRB) 060526 at $z=3.221$. Methods: We present one of the largest photometric datasets ever obtained for a GRB afterglow, consis ting of multi-color photometric data from the ultraviolet to the near infrared. The data set contains 412 data points in total to which we add additional data from the literature. Furthermore, we present low-resolution high signal-to-noise spectra of the afterglow. The afterglow light curve is modeled with both an analytical model using broken power law fits and with a broad-band numerical model which includes energy injections. The absorption lines detected in the spectra are used to derive column densities using a multi-ion single-component curve-of-growth analysis from which we derive the metallicity of the host of GRB 060526. Results: The temporal behaviour of the afterglow follows a double broken power law with breaks at $t=0.090pm0.005$ and $t=2.401pm0.061$ days. It shows deviations from the smooth set of power laws that can be modeled by additional energy injections from the central engine, although some significant microvariability remains. The broadband spectral-energy distribution of the afterglow shows no significant extinction along the line of sight. The metallicity derived from ion{S}{II} and ion{Fe}{II} of [S/H] = --0.57 $pm$0.25 and [Fe/H] = --1.09$pm$0.24 is relatively high for a galaxy at that redshift but comparable to the metallicity of other GRB hosts at similar redshifts. At the position of the afterglow, no host is detected to F775W(AB) = 28.5 mag with the HST, implying an absolute magnitude of the host M(1500 AA{})$>$--18.3 mag which is fainter than most long-duration hosts, although the GRB may be associated with a faint galaxy at a distance of 11 kpc.
74 - D. A. Kann , S. Klose , B. Zhang 2010
We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to September 2009, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in a n earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z=1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, is weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) are very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at one day after the GRB in the z=1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without reveals no indication that the former are statistically significantly more luminous. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا