ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic correlations were long suggested not only to be responsible for the complexity of many novel materials, but also to form essential prerequisites for their intriguing properties. Electronic behavior of iron-based superconductors is far from conventional, while the reason for that is not yet understood. Here we present a combined study of the electronic spectrum in the iron-based superconductor FeSe by means of angle-resolved photoemission spectroscopy (ARPES) and dynamical mean field theory (DMFT). Both methods in unison reveal strong deviations of the spectrum from single-electron approximation for the whole 3$d$ band of iron: not only the well separated coherent and incoherent parts of the spectral weight are observed, but also a noticeable dispersion of the lower Hubbard band (LHB) is clearly present. This way we demonstrate correlations of the most puzzling intermediate coupling strength in iron superconductors.
In the family of the iron-based superconductors, the $RE$FeAsO-type compounds (with $RE$ being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures ($T_{mathrm{c}}$) up to $55 textrm{K}$ and thus hold the key to the el usive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe$_{0.92}$Co$_{0.08}$AsO ($T_{mathrm{c}}=18 textrm{K}$) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the $RE$FeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record $T_{mathrm{c}}$. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO$_{0.6}$F$_{0.4}$ compound with a twice higher $T_{mathrm{c}}=38 textrm{K}$. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap $Delta$ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.
Strong electron interactions in solids increase effective mass, and shrink the electronic bands [1]. One of the most unique and robust experimental facts about iron-based superconductors [2-4] is the renormalization of the conduction band by factor o f 3 near the Fermi level [5-9]. Obviously related to superconductivity, this unusual behaviour remains unexplained. Here, by studying the momentum-resolved spectrum of the whole valence band in a representative material, we show that this phenomenon originates from electronic interaction on a much larger energy scale. We observe an abrupt depletion of the spectral weight in the middle of the Fe $3d$ band, which is accompanied by a drastic increase of the scattering rate. Remarkably, all spectral anomalies including the low-energy renormalization can be explained by coupling to excitations, strongly peaked at about 0.5 eV. Such high-energy interaction distinguishes all unconventional superconductors from common metals.
We derive an effective quasiparticle tight-binding model which is able to describe with high accuracy the low-energy electronic structure of Sr2RuO4 obtained by means of low temperature angle resolved photoemission spectroscopy. Such approach is appl ied to determine the momentum and orbital dependent effective masses and velocities of the electron quasiparticles close to the Fermi level. We demonstrate that the model can provide, among the various computable physical quantities, a very good agreement with the specific heat coefficient and the plasma frequency. Its use is underlined as a realistic input in the analysis of the possible electronic mechanisms related to the superconducting state of Sr2RuO4.
Electronic structure of newly synthesized single crystals of calcium iron arsenide doped with sodium with Tc ranging from 33 to 14 K has been determined by angle-resolved photoemission spectroscopy (ARPES). The measured band dispersion is in general agreement with theoretical calculations, nonetheless implies absence of Fermi surface nesting at antiferromagnetic vector. A clearly developing below Tc strongly band-dependant superconducting gap has been revealed for samples with various doping levels. BCS ratio for optimal doping, $2Delta/k_{rm B}T_{rm c}=5.5$, is substantially smaller than the numbers reported for related compounds, implying a non-trivial relation between electronic dispersion and superconducting gap in iron arsenides.
Among numerous hypotheses, recently proposed to explain superconductivity in iron-based superconductors [1-9], many consider Fermi surface (FS) nesting [2, 4, 8, 10] and dimensionality [4, 9] as important contributors. Precise determination of the el ectronic spectrum and its modification by superconductivity, crucial for further theoretical advance, were hindered by a rich structure of the FS [11-17]. Here, using the angle-resolved photoemission spectroscopy (ARPES) with resolution of all three components of electron momentum and electronic states symmetry, we disentangle the electronic structure of hole-doped BaFe2As2, and show that nesting and dimensionality of FS sheets have no immediate relation to the superconducting pairing. Alternatively a clear correlation between the orbital character of the electronic states and their propensity to superconductivity is observed: the magnitude of the superconducting gap maximizes at 10.5 meV exclusively for iron 3dxz;yz orbitals, while for others drops to 3.5 meV. Presented results reveal similarities of electronic response to superconducting and magneto-structural transitions [18, 19], implying that relation between these two phases is more intimate than just competition for FS, and demonstrate importance of orbital physics in iron superconductors.
Usually the superconducting pairing is considered to modify electronic states only in a narrow momentum range close to the Fermi surface. Here we present a direct experimental observation of fusion of Bogoliubov dispersion branches originating from t he antipodal Fermi crossings by means of angle-resolved photoemission spectroscopy (ARPES). Uncommon discernibility and brightness of bogoliubons fusion stems from comparability of the superconducting gap magnitude and the distance from the Fermi level to the bands top, and strong electron scattering on a mode with similar energy. Such similarity of the electronic and pairing energy scales seems to be a persistent associate of high-temperature superconductivity (HTSC) rather than just a mere coincidence.
We report superconducting (SC) properties of stoichiometric LiFeAs (Tc = 17 K) studied by small-angle neutron scattering (SANS) and angle-resolved photoemission (ARPES). Although the vortex lattice exhibits no long-range order, well-defined SANS rock ing curves indicate better ordering than in chemically doped 122-compounds. The London penetration depth of 210 nm, determined from the magnetic field dependence of the form factor, is compared to that calculated from the ARPES band structure with no adjustable parameters. Its temperature dependence is best described by a single isotropic SC gap of 3.0 meV, which agrees with the ARPES value of 3.1 meV and corresponds to the ratio 2Delta/kTc = 4.1, approaching the weak-coupling limit predicted by the BCS theory. This classifies LiFeAs as a weakly coupled single-gap superconductor, similar to conventional metals.
Here we apply high resolution angle-resolved photoemission spectroscopy (ARPES) using a wide excitation energy range to probe the electronic structure and the Fermi surface topology of the Ba1-xKxFe2As2 (Tc = 32 K) superconductor. We find significant deviations in the low energy band structure from that predicted in calculations. A set of Fermi surface sheets with unexpected topology is detected at the Brillouin zone boundary. At the X-symmetry point the Fermi surface is formed by a shallow electron-like pocket surrounded by four hole-like pockets elongated in G-X and G-Y directions.
Here we present a calculation of the temperature-dependent London penetration depth, $lambda(T)$, in Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ (BKFA) on the basis of the electronic band structure [1,2] and momentum-dependent superconducting gap [3] extracted fro m angle-resolved photoemission spectroscopy (ARPES) data. The results are compared to the direct measurements of $lambda(T)$ by muon spin rotation ($mu$SR) [4]. The value of $lambda(T=0)$, calculated with emph{no} adjustable parameters, equals 270 nm, while the directly measured one is 320 nm; the temperature dependence $lambda(T)$ is also easily reproduced. Such agreement between the two completely different approaches allows us to conclude that ARPES studies of BKFA are bulk-representative. Our review of the available experimental studies of the superconducting gap in the new iron-based superconductors in general allows us to state that all hole-doped of them bear two nearly isotropic gaps with coupling constants $2Delta/k_{rm B}T_{rm c}=2.5pm1.5$ and $7pm2$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا