ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaia is an astrometric mission that will be launched in spring 2013. There are many scientific outcomes from this mission and as far as our Solar System is concerned, the satellite will be able to map thousands of main belt asteroids (MBAs) and near- Earth objects (NEOs) down to magnitude < 20. The high precision astrometry (0.3-5 mas of accuracy) will allow orbital improvement, mass determination, and a better accuracy in the prediction and ephemerides of potentially hazardous asteroids (PHAs). We give in this paper some simulation tests to analyse the impact of Gaia data on known asteroids orbit, and their value for the analysis of NEOs through the example of asteroid (99942) Apophis. We then present the need for a follow-up network for newly discovered asteroids by Gaia, insisting on the synergy of ground and space data for the orbital improvement.
Gaia is an astrometric mission that will be launched in 2013 and set on L2 point of Lagrange. It will observe a large number of Solar System Objets (SSO) down to magnitude 20. The Solar System Science goal is to map thousand of Main Belt asteroids (M BAs), Near Earth Objects (NEOs) (including comets) and also planetary satellites with the principal purpuse of orbital determination (better than 5 mas astrometric precision), determination of asteroid mass, spin properties and taxonomy. Besides, Gaia will be able to discover a few objects, in particular NEOs in the region down to the solar elongation 45{deg} which are harder to detect with current ground-based surveys. But Gaia is not a follow-up mission and newly discovered objects can be lost if no ground-based recovery is processed. The purpose of this study is to quantify the impact of Gaia data for the known NEAs population and to show how to handle the problem of these discoveries when faint number of observations and thus very short arc is provided.
In this communication, we show how asteroids observations from the Gaia mission can be used to perform local tests of General Relativity (GR). This ESA mission, launched in December 2013, will observe --in addition to the stars-- a large number of sm all Solar System Objects (SSOs) with unprecedented astrometric precision. Indeed, it is expected that about 360,000 asteroids will be observed with a nominal sub-mas precision. Here, we show how these observations can be used to constrain some extensions to General Relativity. We present results of SSOs simulations that take into account the time sequences over 5 years and geometry of the observations that are particular to Gaia. We present a sensitivity study on various GR extensions and dynamical parameters including: the Sun quadrupolar moment $J_2$, the parametrized post-Newtonian parameter $beta$, the Nordtvedt parameter $eta$, the fifth force formalism, the Lense-Thirring effect, a temporal variation of the gravitational parameter $GM_textrm{sun}$ (a linear variation as well as a periodic variation), the Standard Model Extension formalism,... Some implications for planetary ephemerides analysis are also briefly discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا