ترغب بنشر مسار تعليمي؟ اضغط هنا

481 - D. Biswas , A. M. Ganose , R. Yano 2017
We have used angle resolved photoemission spectroscopy to investigate the band structure of ReS$_2$, a transition-metal dichalcogenide semiconductor with a distorted 1T crystal structure. We find a large number of narrow valence bands, which we attri bute to the combined influence of the structural distortion and spin-orbit coupling. We further image how this leads to a strong in-plane anisotropy of the electronic structure, with quasi-one-dimensional bands reflecting predominant hopping along zig-zag Re chains. We find that this does not persist up to the top of the valence band, where a more three-dimensional character is recovered with the fundamental band gap located away from the Brillouin zone centre along $k_z$. These experiments are in good agreement with our density-functional theory calculations, shedding new light on the bulk electronic structure of ReS$_2$, and how it can be expected to evolve when thinned to a single layer.
We investigate the electronic structure of CaFe$_2$As$_2$ using high resolution photoemission spectroscopy. Experimental results exhibit three energy bands crossing the Fermi level making hole pockets around the $Gamma$-point. Temperature variation r eveal a gradual shift of an energy band away from the Fermi level with the decrease in temperature in addition to the spin density wave (SDW) transition induced Fermi surface reconstruction of the second energy band across SDW transition temperature. The hole pocket in the former case eventually disappears at lower temperatures while the hole Fermi surface of the third energy band possessing finite $p$ orbital character survives till the lowest temperature studied. These results reveal signature of a complex charge redistribution among various energy bands as a function of temperature that might be associated to the exotic properties of this system.
We studied the electronic structure of a Shastry-Sutherland lattice system, HoB4 employing high resolution photoemission spectroscopy and ab initio band structure calculations. The surface and bulk borons exhibit subtle differences, and loss of boron compared to the stoichiometric bulk. However, the surface and bulk conduction bands near Fermi level are found to be similar. Evolution of the electronic structure with temperature is found to be similar to that observed in a typical charge-disordered system. A sharp dip is observed at the Fermi level in the low temperature spectra revealing signature of antiferromagnetic gap. Asymmetric spectral weight transfer with temperature manifests particle-hole asymmetry that may be related to the exotic properties of these systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا