ترغب بنشر مسار تعليمي؟ اضغط هنا

We employed an electrically-driven polarization controller to implement anisotropic depolarizing quantum channels for the polarization state of single photons. The channels were characterized by means of ancilla-assisted quantum process tomography us ing polarization-entangled photons generated in the process of spontaneous parametric down-conversion. The demonstrated depolarization method offers good repeatability, low cost, and compatibility with fiber-optic setups. It does not perturb the modal structure of single photons, and therefore can be used to verify experimentally protocols for managing decoherence effects based on multiphoton interference.
We present an experimental characterization of the statistics of multiple photon pairs produced by spontaneous parametric down-conversion realized in a nonlinear medium pumped by high-energy ultrashort pulses from a regenerative amplifier. The photon number resolved measurement has been implemented with the help of a fiber loop detector. We introduce an effective theoretical description of the observed statistics based on parameters that can be assigned direct physical nterpretation. These parameters, determined for our source from the collected experimental data, characterize the usefulness of down-conversion sources in multiphoton interference schemes that underlie protocols for quantum information processing and communication.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا