ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical and optoelectronic approaches of performing matrix-vector multiplication (MVM) operations have shown the great promise of accelerating machine learning (ML) algorithms with unprecedented performance. The incorporation of nanomaterials into th e system can further improve the performance thanks to their extraordinary properties, but the non-uniformity and variation of nanostructures in the macroscopic scale pose severe limitations for large-scale hardware deployment. Here, we report a new optoelectronic architecture consisting of spatial light modulators and photodetector arrays made from graphene to perform MVM. The ultrahigh carrier mobility of graphene, nearly-zero-power-consumption electro-optic control, and extreme parallelism suggest ultrahigh data throughput and ultralow-power consumption. Moreover, we develop a methodology of performing accurate calculations with imperfect components, laying the foundation for scalable systems. Finally, we perform a few representative ML algorithms, including singular value decomposition, support vector machine, and deep neural networks, to show the versatility and generality of our platform.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا