ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the IR phases of non-supersymmetric (non-SUSY) $SO(N_c)$ gauge theories with $N_F$ fermions in the vector representation obtained by perturbing the SUSY theory with anomaly mediated SUSY breaking (AMSB). We find that of the wide variet y of phases appearing in the SUSY theory only two survive: for $N_F<frac{3}{2} (N_c-2)$ the theory confines, breaking the $SU(N_F)$ global symmetry to $SO(N_F)$, while for $frac{3}{2} (N_c-2)<N_F<3(N_c-2)$ the theory flows to a (super)-conformal fixed point. The abelian Coulomb and free magnetic phases do not survive and collapse to the confining phase. We also investigate the behavior of loop operators in order to provide a clear distinction between the confining and screened phases. With the choice of $Spin(N_c)$ for the global structure of the gauge group, we find that the electric Wilson loop indeed obeys an area law, providing one of the first demonstrations of true confinement with chiral symmetry breaking in a non-SUSY theory. We identify monopole condensation as the dynamics underlying confinement. These monopoles arise naturally for $N_F=N_c-2$. The case with smaller number of flavors can be obtained by integrating out flavors, and we confirm numerically that the monopole condensate persists in the presence of AMSB and mass perturbations.
We demonstrate that $SO(N_{c})$ gauge theories with matter fields in the vector representation confine due to monopole condensation and break the $SU(N_{F})$ chiral symmetry to $SO(N_{F})$ via the quark bilinear. Our results are obtained by perturbin g the ${cal N}=1$ supersymmetric theory with anomaly-mediated supersymmetry breaking.
We examine the possibility that dark matter (DM) consists of a gapped continuum, rather than ordinary particles. A Weakly-Interacting Continuum (WIC) model, coupled to the Standard Model via a Z-portal, provides an explicit realization of this idea. The thermal DM relic density in this model is naturally consistent with observations, providing a continuum counterpart of the WIMP miracle. Direct detection cross sections are strongly suppressed compared to ordinary Z-portal WIMP, thanks to a unique effect of the continuum kinematics. Continuum DM states decay throughout the history of the universe, and observations of cosmic microwave background place constraints on potential late decays. Production of WICs at colliders can provide a striking cascade-decay signature. We show that a simple Z-portal WIC model with the gap scale between 40 and 110 GeV provides a fully viable DM candidate consistent with all current experimental constraints.
We study dynanics of $SU(N-4)$ gauge theories with fermions in rank-2 symmetric tensor and $N$ anti-fundamental representations, by perturbing supersymmetric theories with anomaly-mediated supersymmetry breaking. We find the $SU(N)times U(1)$ global symmetry is dynamically broken to $SO(N)$ for $Ngeq 17$, a different result from conjectures in the literature. For $N<17$, theories flow to infrared fixed points.
We introduce a new approach to the Higgs naturalness problem, where the value of the Higgs mass is tied to cosmic stability and the possibility of a large observable Universe. The Higgs mixes with the dilaton of a CFT sector whose true ground state h as a large negative vacuum energy. If the Higgs VEV is non-zero and below $mathcal{O}({rm TeV})$, the CFT also admits a second metastable vacuum, where the expansion history of the Universe is conventional. As a result, only Hubble patches with unnaturally small values of the Higgs mass support inflation and post-inflationary expansion, while all other patches rapidly crunch. The elementary Higgs VEV driving the dilaton potential is the essence of our new solution to the hierarchy problem. The main experimental prediction is a light dilaton field in the 0.1-10 GeV range that mixes with the Higgs. Part of the viable parameter space has already been probed by measurements of rare B-meson decays, and the rest will be fully explored by future colliders and experiments searching for light, weakly-coupled particles.
We propose a novel explanation for the smallness of the observed cosmological constant (CC). Regions of space with a large CC are short lived and are dynamically driven to crunch soon after the end of inflation. Conversely, regions with a small CC ar e metastable and long lived and are the only ones to survive until late times. While the mechanism assumes many domains with different CC values, it does not result in eternal inflation nor does it require a long period of inflation to populate them. We present a concrete dynamical model, based on a super-cooled first order phase transition in a hidden conformal sector, that may successfully implement such a crunching mechanism. We find that the mechanism can only solve the CC problem up to the weak scale, above which new physics, such as supersymmetry, is needed to solve the CC problem all the way to the UV cutoff scale. The absence of experimental evidence for such new physics already implies a mild little hierarchy problem for the CC. Curiously, in this approach the weak scale arises as the geometric mean of the temperature in our universe today and the Planck scale, hinting on a new CC miracle, motivating new physics at the weak scale independent of electroweak physics. We further predict the presence of new relativistic degrees of freedom in the CFT that should be visible in the next round of CMB experiments. Our mechanism is therefore experimentally falsifiable and predictive.
We examine the contribution of small instantons to the axion mass in various UV completions of QCD. We show that the reason behind the potential dominance of such contributions is the non-trivial embedding of QCD into the UV theory. The effects from instantons in the partially broken gauge group appear as fractional instanton corrections in the effective theory. These will exhibit unusual dependences on the various scales in the problem whenever the index of embedding is non-trivial. We present a full one-instanton calculation of the axion mass in the simplest product group models, carefully keeping track of numerical prefactors. Rather than using a t Hooft operator approximation we directly evaluate the contributions to the vacuum bubble, automatically capturing the effects of closing up external fermion lines with Higgs loops. This approach is manifestly finite and removes the uncertainty associated with introducing a cutoff scale for the Higgs loops. We verify that the small instantons may dominate over the QCD contribution for very high breaking scales and at least three group factors.
We present the most general sum rules reflecting the cancellation of ultraviolet divergences in the Higgs potential in weakly-coupled, natural extensions of the Standard Model. There is a separate sum rule for the cancellation of the quadratic and lo garithmic divergences, and their forms depend on whether the divergences are canceled by same-spin or opposite-spin partners. These sum rules can be applied to mass eigenstates and conveniently used for direct collider tests of naturalness. We study in detail the feasibility of testing these sum rules in the top sector at a future $100TeV$ proton collider within two benchmark models, the Little Higgs (LH) and the Maximally Symmetric Composite Higgs (MSCH). We show how the two ingredients of the sum rules, the top partner masses and their Yukawa couplings to the Higgs, can be measured with sufficient accuracy to provide a highly non-trivial quantitative test of the sum rules. In particular, we study observables sensitive to the sign of the top partner Yukawa, which is crucial for verifying the sum rules but is notoriously difficult to measure. We demonstrate that in the benchmark models under study, a statistically significant discrimination between the two possible signs of each Yukawa will be feasible with a 30 ab$^{-1}$ data set at $100TeV$.
The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However light scalars can appear in condensed matter systems when parameters (like the amount of dopin g) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in AdS space. For both of these models we consider the processes $ggto ZZ$ and $ggto hh$, which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.
We examine the effective low-energy theory of the adjoint sector of Dirac gaugino models and its UV completions, and identify the main source of tuning. A holomorphic scalar adjoint mass square (the $b_M$ term) is generated at the same order (1-loop) as the Dirac gaugino mass (the $m_D$ term), leading to the problematic relation $b_Msim16pi^2 m_D^2$, somewhat analogous to the $mu-B_mu$ problem of gauge mediation. We identify the leading operators of the low-energy effective theory contributing to the adjoint sector, and evaluate them in various UV completions, confirming the existence of this problem. We suggest a solution by introducing messenger mixing and tuning the relevant parameters. We also present a novel dynamical model for Dirac gauginos based on a strongly coupled SUSY QCD theory, where the additional adjoint $M$ is identified with a confined meson, the U(1) with a baryon-number like symmetry, and the messengers with the confined baryons. We find a SUSY breaking vacuum with a non-vanishing D-term, which after tuning the messenger mixing angles gives rise to a realistic gaugino and squark sector.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا