ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the equivalence principle and its violations by quantum effects in scalar-tensor theories that admit a conformal frame in which matter only couples to the spacetime metric. These theories possess Ward identities that guarantee the validity o f the weak equivalence principle to all orders in the matter coupling constants. These Ward identities originate from a broken Weyl symmetry under which the scalar field transforms by a shift, and from the symmetry required to couple a massless spin two particle to matter (diffeomorphism invariance). But the same identities also predict violations of the weak equivalence principle relatively suppressed by at least two powers of the gravitational couplings, and imply that quantum corrections do not preserve the structure of the action of these theories. We illustrate our analysis with a set of specific examples for spin zero and spin half matter fields that show why matter couplings do respect the equivalence principle, and how the couplings to the gravitational scalar lead to the weak equivalence principle violations predicted by the Ward identities.
We apply the effective field theory approach to the coupled metric-inflaton system, in order to investigate the impact of higher dimension operators on the spectrum of scalar and tensor perturbations in the short-wavelength regime. In both cases, eff ective corrections at tree-level become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length below which conventional cosmological perturbation theory does not apply is likely to be much smaller than the Planck length. This has implications for the observability of trans-Planckian effects in the spectrum of primordial perturbations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا