ترغب بنشر مسار تعليمي؟ اضغط هنا

The density and temperature dependence of the nuclear symmetry free energy is investigated using microscopic two- and three-body nuclear potentials constructed from chiral effective field theory. The nuclear force models and many-body methods are ben chmarked to properties of isospin-symmetric nuclear matter in the vicinity of the saturation density as well as the virial expansion of the neutron matter equation of state at low fugacities. The free energy per particle of isospin-asymmetric nuclear matter is calculated assuming a quadratic dependence of the interaction contributions on the isospin asymmetry. The spinodal instability at subnuclear densities is examined in detail.
We investigate the thermodynamic equation of state of isospin-symmetric nuclear matter with microscopic nuclear forces derived within the framework of chiral effective field theory. Two- and three-body nuclear interactions constructed at low resoluti on scales form the basis for a perturbative calculation of the finite-temperature equation of state. The nuclear force models and many-body methods are benchmarked against bulk properties of isospin-symmetric nuclear matter at zero temperature, which are found to be well reproduced when chiral nuclear interactions constructed at the lowest resolution scales are employed. The calculations are then extended to finite temperatures, where we focus on the liquid-gas phase transition and the associated critical point. The Maxwell construction is applied to construct the physical equation of state, and the value of the critical temperature is determined to be T_c =17.2-19.1 MeV, in good agreement with the value extracted from multifragmentation reactions of heavy ions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا