ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we investigate protoneutron star properties within a modified version of the quark coupling model (QMC) that incorporates a omega-rho interaction plus kaon condensed matter at finite temperature. Fixed entropy and trapped neutrinos are t aken into account. Our results are compared with the ones obtained with the GM1 parametrization of the non-linear Walecka model for similar values of the symmetry energy slope. Contrary to GM1, within the QMC the formation of low mass black-holes during cooling are not probable. It is shown that the evolution of the protoneutron star may include the melting of the kaon condensate driven by the neutrino diffusion, followed by the formation of a second condensate after cooling. The signature of this complex proccess could be a neutrino signal followed by a gamma ray burst. We have seen that both models can, in general, describe very massive stars.
The equilibrium between the so-called 2SC and CFL phases of strange quark matter at high densities is investigated in the framework of a simple schematic model of the NJL type. Equal densities are assumed for quarks $u,d$ and $s$. The 2SC phase is he re described by a color-flavor symmetric state, in which the quark numbers are independent of the color-flavor combination. In the CFL phase the quark numbers depend on the color-flavor combination, that is, the number of quarks associated with the color-flavor combinations $ur,dg,sb$ is different from the number of quarks associated with the color flavor combinations $ug,ub,dr,db,sr,sg$. We find that the 2SC phase is stable for a chemical potential $mu$ below $mu_c=0.505$ GeV, while the CFL phase is stable above, the equilibrium pressure being $P_c=0.003$ GeV$^4$. We have used a 3-momentum regularizing cutoff $Lambda=0.8$ GeV, which is somewhat larger than is usual in NJL type models. This should be adequate if the relevant chemical potential does not exceed 0.6 GeV.
We present various properties of nuclear and compact-star matter, comparing the predictions from two kinds of phenomenological approaches: relativistic models (both with constant and density-dependent couplings) and non-relativistic Skyrme-type inter actions. We mainly focus on the liquid-gas instabilities that occur at sub-saturation densities, leading to the decomposition of the homogeneous matter into a clusterized phase. Such study is related to the description of neutron-star crust (at zero temperature) and of supernova dynamics (at finite temperature).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا