ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - Conny Aerts 2015
We provide a status report on the determination of stellar ages from asteroseismology for stars of various masses and evolutionary stages. The ability to deduce the ages of stars with a relative precision of typically 10 to 20% is a unique opportunit y for stellar evolution and also of great value for both galactic and exoplanet studies. Further, a major uncalibrated ingredient that makes stellar evolution models uncertain, is the stellar interior rotation frequency $Omega(r)$ and its evolution during stellar life. We summarize the recent achievements in the derivation of $Omega(r)$ for different types stars, offering stringent observational constraints on theoretical models. Core-to-envelope rotation rates during the red giant stage are far lower than theoretical predictions, pointing towards the need to include new physical ingredients that allow strong and efficient coupling between the core and the envelope in the models of low-mass stars in the evolutionary phase prior to the core helium burning. Stars are subject to efficient mixing phenomena, even at low rotation rates. Young massive stars with seismically determined interior rotation frequency reveal low core-to-envelope rotation values.
Realistic stellar models are essential to the forward modelling approach in asteroseismology. For practicality however, certain model assumptions are also required. For example, in the case of subdwarf B stars, one usually starts with zero-age horizo ntal branch structures without following the progenitor evolution. We analyse the effects of common assumptions in subdwarf B models on the g-mode pulsational properties. We investigate if and how the pulsation periods are affected by the H-profile in the core-envelope transition zone. Furthermore, the effects of C-production and convective mixing during the core helium flash are evaluated. Finally, we reanalyse the effects of stellar opacities on the mode excitation in subdwarf B stars. We find that helium settling causes a shift in the theoretical blue edge of the g-mode instability domain to higher effective temperatures. This results in a closer match to the observed instability strip of long-period sdB pulsators, particularly for l<=3 modes. We show further that the g-mode spectrum is extremely sensitive to the H-profile in the core-envelope transition zone. If atomic diffusion is efficient, details of the initial shape of the profile become less important in the course of evolution. Diffusion broadens the chemical gradients, and results in less effective mode trapping and different pulsation periods. Furthermore, we report on the possible consequences of the He-flash for the g-modes. The outer edge of a flash-induced convective region introduces an additional chemical transition in the stellar models, and the corresponding spike in the Brunt-Vaisala frequency produces a complicated mode trapping signature in the period spacings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا