ترغب بنشر مسار تعليمي؟ اضغط هنا

Over the last years, analyses performed on a stochastic model of catalytic reaction networks have provided some indications about the reasons why wet-lab experiments hardly ever comply with the phase transition typically predicted by theoretical mode ls with regard to the emergence of collectively self-replicating sets of molecule (also defined as autocatalytic sets, ACSs), a phenomenon that is often observed in nature and that is supposed to have played a major role in the emergence of the primitive forms of life. The model at issue has allowed to reveal that the emerging ACSs are characterized by a general dynamical fragility, which might explain the difficulty to observe them in lab experiments. In this work, the main results of the various analyses are reviewed, with particular regard to the factors able to affect the generic properties of catalytic reactions network, for what concerns, not only the probability of ACSs to be observed, but also the overall activity of the system, in terms of production of new species, reactions and matter.
The Wivace 2013 Electronic Proceedings in Theoretical Computer Science (EPTCS) contain some selected long and short articles accepted for the presentation at Wivace 2013 - Italian Workshop on Artificial Life and Evolutionary Computation, which was he ld at the University of Milan-Bicocca, Milan, on the 1st and 2nd of July, 2013.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا