ترغب بنشر مسار تعليمي؟ اضغط هنا

107 - Yue Shen , Colin J. Burke 2021
When a flux-limited quasar sample is observed at later times, there will be more dimmed quasars than brightened ones, due to a selection bias induced at the time of sample selection. Quasars are continuously varying and there are more fainter quasars than brighter ones. At the time of selection, even symmetrical variability will result in more quasars with their instantaneous fluxes scattered above the flux limit than those scattered below, leading to an asymmetry in flux changes over time. The same bias would lead to an asymmetry in the ensemble structure function (SF) of the sample such that the SF based on pairs with increasing fluxes will be slightly smaller than that based on pairs with decreasing fluxes. We use simulated time-symmetric quasar light curves based on the damped random walk prescription to illustrate the effects of this bias. The level of this bias depends on the sample, the threshold of magnitude changes, and the coverage of light curves, but the general behaviors are consistent. In particular, the simulations matched to recent observational studies with decade-long light curves produce an asymmetry in the SF measurements at the few percent level, similar to the observed values. These results provide a cautionary note on the reported time asymmetry in some recent quasar variability studies.
Accretion disks around supermassive black holes in active galactic nuclei produce continuum radiation at ultraviolet and optical wavelengths. Physical processes in the accretion flow lead to stochastic variability of this emission on a wide range of timescales. We measure the optical continuum variability observed in 67 active galactic nuclei and the characteristic timescale at which the variability power spectrum flattens. We find a correlation between this timescale and the black hole mass, extending over the entire mass range of supermassive black holes. This timescale is consistent with the expected thermal timescale at the ultraviolet-emitting radius in standard accretion disk theory. Accreting white dwarfs lie close to this correlation, suggesting a common process for all accretion disks.
The recent report of an association of the gravitational-wave (GW) binary black hole (BBH) merger GW190521 with a flare in the Active Galactic Nuclei (AGN) J124942.3+344929 has generated tremendous excitement. However, GW190521 has one of the largest localization volumes amongst all of the GW events detected so far. The 90% localization volume likely contains $7,400$ unobscured AGN brighter than $g leq 20.5$ AB mag, and it results in a $gtrsim 70%$ probability of chance coincidence for an AGN flare consistent with the GW event. We present a Bayesian formalism to estimate the confidence of an AGN association by analyzing a population of BBH events with dedicated follow-up observations. Depending on the fraction of BBH arising from AGNs, counterpart searches of $mathcal{O}(1)-mathcal{O}(100)$ GW events are needed to establish a confident association, and more than an order of magnitude more for searches without followup (i.e, using only the locations of AGNs and GW events). Follow-up campaigns of the top $sim 5%$ (based on volume localization and binary mass) of BBH events with total rest frame mass $ge 50~M_odot$ are expected to establish a confident association during the next LIGO/Virgo/KAGRA observing run (O4), as long as the true value of the fraction of BBH giving rise to AGN flares is $>0.1$. Our formalism allows us to jointly infer cosmological parameters from a sample of BBH events that include chance coincidence flares. Until the confidence of AGN associations is established, the probability of chance coincidence must be taken into account to avoid biasing astrophysical and cosmological constraints.
We present optical light curves from the Transiting Exoplanet Survey Satellite (TESS) for the archetypical dwarf active galactic nucleus (AGN) in the nearby galaxy NGC 4395 hosting a $sim 10^5,M_odot$ supermassive black hole (SMBH). Significant varia bility is detected on timescales from weeks to hours before reaching the background noise level. The $sim$month-long, 30 minute-cadence, high-precision TESS light curve can be well fit by a simple damped random walk (DRW) model, with the damping timescale $tau_{rm DRW}$ constrained to be $2.3_{-0.7}^{+1.8}$~days ($1sigma$). NGC 4395 lies almost exactly on the extrapolation of the $tau_{rm DRW}-M_{rm BH}$ relation measured for AGNs with BH masses that are more than three orders of magnitude larger. The optical variability periodogram can be well fit by a broken power law with the high-frequency slope ($-1.88pm0.15$) and the characteristic timescale ($tau_{rm br}equiv 1/(2pi f_{rm br})=1.4_{-0.5}^{+1.9},$days) consistent with the DRW model within 1$sigma$. This work demonstrates the power of TESS light curves in identifying low-mass accreting SMBHs with optical variability, and a potential global $tau_{rm DRW}-M_{rm BH}$ relation that can be used to estimate SMBH masses with optical variability measurements.
We report the identification of a low-mass AGN, DES J0218$-$0430, in a redshift $z = 0.823$ galaxy in the Dark Energy Survey (DES) Supernova field. We select DES J0218$-$0430 as an AGN candidate by characterizing its long-term optical variability alo ne based on DES optical broad-band light curves spanning over 6 years. An archival optical spectrum from the fourth phase of the Sloan Digital Sky Survey shows both broad Mg II and broad H$beta$ lines, confirming its nature as a broad-line AGN. Archival XMM-Newton X-ray observations suggest an intrinsic hard X-ray luminosity of $L_{{rm 2-12,keV}}sim7.6pm0.4times10^{43}$ erg s$^{-1}$, which exceeds those of the most X-ray luminous starburst galaxies, in support of an AGN driving the optical variability. Based on the broad H$beta$ from SDSS spectrum, we estimate a virial BH mass of $M_{bullet}approx10^{6.43}$-$10^{6.72}M_{odot}$ (with the error denoting 1$sigma$ statistical uncertainties only), consistent with the estimation from OzDES, making it the lowest mass AGN with redshift $>$ 0.4 detected in optical. We estimate the host galaxy stellar mass to be $M_{ast}sim10^{10.5pm0.3}M_{odot}$ based on modeling the multi-wavelength spectral energy distribution. DES J0218$-$0430 extends the $M_{bullet}$-$M_{ast}$ relation observed in luminous AGNs at $zsim1$ to masses lower than being probed by previous work. Our work demonstrates the feasibility of using optical variability to identify low-mass AGNs at higher redshift in deeper synoptic surveys with direct implications for the upcoming Legacy Survey of Space and Time at Vera C. Rubin Observatory.
We report on small-amplitude optical variability and recent dissipation of the unusually persistent broad emission lines in the blue compact dwarf galaxy PHL 293B. The galaxys unusual spectral features (P Cygni-like profiles with $sim$800 km s$^{-1}$ blueshifted absorption lines) have resulted in conflicting interpretations of the nature of this source in the literature. However, analysis of new Gemini spectroscopy reveals the broad emission has begun to fade after being persistent for over a decade prior. Precise difference imaging light curves constructed with the Sloan Digital Sky Survey and the Dark Energy Survey reveal small-amplitude optical variability of $sim$0.1 mag in the g band offset by $100pm21$ pc from the brightest pixel of the host. The light curve is well-described by an active galactic nuclei (AGN)-like damped random walk process. However, we conclude that the origin of the optical variability and spectral features of PHL 293B is due to a long-lived stellar transient, likely a Type IIn supernova or non-terminal outburst, mimicking long-term AGN-like variability. This work highlights the challenges of discriminating between scenarios in such extreme environments, relevant to searches for AGNs in dwarf galaxies. This is the second long-lived transient discovered in a blue compact dwarf, after SDSS1133. Our result implies such long-lived stellar transients may be more common in metal-deficient galaxies. Systematic searches for low-level variability in dwarf galaxies will be possible with the upcoming Legacy Survey of Space and Time at Vera C. Rubin Observatory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا