ترغب بنشر مسار تعليمي؟ اضغط هنا

We prove that there exists a universal constant $c$ such that any closed hyperbolic 3-manifold admits a triangulation of treewidth at most $c$ times its volume. The converse is not true: we show there exists a sequence of hyperbolic 3-manifolds of bo unded treewidth but volume approaching infinity. Along the way, we prove that crushing a normal surface in a triangulation does not increase the carving-width, and hence crushing any number of normal surfaces in a triangulation affects treewidth by at most a constant multiple.
The Turaev-Viro invariants are a powerful family of topological invariants for distinguishing between different 3-manifolds. They are invaluable for mathematical software, but current algorithms to compute them require exponential time. The invaria nts are parameterised by an integer $r geq 3$. We resolve the question of complexity for $r=3$ and $r=4$, giving simple proofs that computing Turaev-Viro invariants for $r=3$ is polynomial time, but for $r=4$ is #P-hard. Moreover, we give an explicit fixed-parameter tractable algorithm for arbitrary $r$, and show through concrete implementation and experimentation that this algorithm is practical---and indeed preferable---to the prior state of the art for real computation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا