ترغب بنشر مسار تعليمي؟ اضغط هنا

In recent years the possibility of measuring the temporal change of radial and transverse position of sources in the sky in real time have become conceivable thanks to the thoroughly improved technique applied to new astrometric and spectroscopic exp eriments, leading to the research domain we call Real-time cosmology. We review for the first time great part of the work done in this field, analysing both the theoretical framework and some endeavor to foresee the observational strategies and their capability to constrain models. We firstly focus on real time measurements of the overall redshift drift and angular separation shift in distant source, able to trace background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper acceleration in clustered systems and therefore the gravitational potential. The last two sections are devoted to the short time future change of the cosmic microwave background, as well as to the temporal shift of the temperature anisotropy power spectrum and maps. We conclude revisiting in this context the effort made to forecast the power of upcoming experiments like CODEX, GAIA and PLANCK in providing these new observational tools.
Cosmic parallax is the change of angular separation between pair of sources at cosmological distances induced by an anisotropic expansion. An accurate astrometric experiment like Gaia could observe or put constraints on cosmic parallax. Examples of a nisotropic cosmological models are Lemaitre-Tolman-Bondi void models for off-center observers (introduced to explain the observed acceleration without the need for dark energy) and Bianchi metrics. If dark energy has an anisotropic equation of state, as suggested recently, then a substantial anisotropy could arise at $z lesssim 1$ and escape the stringent constraints from the cosmic microwave background. In this paper we show that such models could be constrained by the Gaia satellite or by an upgraded future mission.
Refined astrometry measurements allow us to detect large-scale deviations from isotropy through real-time observations of changes in the angular separation between sources at cosmic distances. This cosmic parallax effect is a powerful consistency tes t of FRW metric and may set independent constraints on cosmic anisotropy. We apply this novel general test to LTB cosmologies with off-center observers and show that future satellite missions such as Gaia might achieve accuracies that would put limits on the off-center distance which are competitive with CMB dipole constraints.
In Dantean cosmography the Universe is described as a series of concentric spheres with all the known planets embedded in their rotation motion, the Earth located at the centre and Lucifer at the centre of the Earth. Beyond these celestial spheres, D ante represents the angelic choirs as other nine spheres surrounding God. The rotation velocity increases with decreasing distance from God, that is with increasing Power (Virtu). We show that, adding Power as an additional fourth dimension to space, the modern equations governing the expansion of a closed Universe (i. e. with the density parameter Omega_0>1) in the space-time, can be applied to the medieval Universe as imaged by Dante in his Divine Comedy. In this representation the Cosmos acquires a unique description and Lucifer is not located at the centre of the hyperspheres.
It has been suggested recently that the change in cosmological redshift (the Sandage test of expansion) could be observed in the next generation of large telescopes and ultra-stable spectrographs. In a recent paper we estimated the change of peculiar velocity, i.e. the peculiar acceleration, in nearby galaxies and clusters and shown it to be of the same order of magnitude as the typical cosmological signal. Mapping the acceleration field allows for a reconstruction of the galactic gravitational potential without assuming virialization. In this paper we focus on the peculiar acceleration in our own Galaxy, modeled as a Kuzmin disc and a dark matter spherical halo. We estimate the peculiar acceleration for all known Galactic globular clusters and find some cases with an expected velocity shift in excess of 20 cm/sec for observations fifteen years apart, well above the typical cosmological acceleration. We then compare the predicted signal for a MOND (modified Newtonian dynamics) model in which the spherical dark matter halo is absent. We find that the signal pattern is qualitatively different, showing that the peculiar acceleration field could be employed to test competing theories of gravity. However the difference seems too small to be detectable in the near future.
We explore the dynamics of cosmological models with two coupled dark components with energy densities $rho_A$ and $rho_B$. We assume that the coupling is of the form $Q=Hq(rho_A,rho_B)$, so that the dynamics of the two components turns out to be scal e independent, i.e. does not depend explicitly on the Hubble scalar $H$. With this assumption, we focus on the general linear coupling $q=q_o+q_Arho_A+q_Brho_B$, which may be seen as arising from any $q(rho_A,rho_B)$ at late time and leads in general to an effective cosmological constant. In the second part of the paper we consider observational constraints on the form of the coupling from SN Ia data, assuming that one of the components is cold dark matter. We find that the constant part of the coupling function is unconstrained by SN Ia data and, among typical linear coupling functions, the one proportional to the dark energy density $rho_{A}$ is preferred in the strong coupling regime, $|q_{A}|>1$. While phantom models favor a positive coupling function, in non-phantom models, not only a negative coupling function is allowed, but the uncoupled sub-case falls at the border of the likelihood.
We explore the possibility that a scalar field with appropriate Lagrangian can mimic a perfect fluid with an affine barotropic equation of state. The latter can be thought of as a generic cosmological dark component evolving as an effective cosmologi cal constant plus a generalized dark matter. As such, it can be used as a simple, phenomenological model for either dark energy or unified dark matter. Furthermore, it can approximate (up to first order in the energy density) any barotropic dark fluid with arbitrary equation of state. We find that two kinds of Lagrangian for the scalar field can reproduce the desired behaviour: a quintessence-like with a hyperbolic potential, or a purely kinetic k-essence one. We discuss the behaviour of these two classes of models from the point of view of the cosmological background, and we give some hints on their possible clustering properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا