ترغب بنشر مسار تعليمي؟ اضغط هنا

An exact computation of the persistent Betti numbers of a submanifold $X$ of a Euclidean space is possible only in a theoretical setting. In practical situations, only a finite sample of $X$ is available. We show that, under suitable density conditio ns, it is possible to estimate the multidimensional persistent Betti numbers of $X$ from the ones of a union of balls centered on the sample points; this even yields the exact value in restricted areas of the domain. Using these inequalities we improve a previous lower bound for the natural pseudodistance to assess dissimilarity between the shapes of two objects from a sampling of them. Similar inequalities are proved for the multidimensional persistent Betti numbers of the ball union and the one of a combinatorial description of it.
Reeb graphs are structural descriptors that capture shape properties of a topological space from the perspective of a chosen function. In this work we define a combinatorial metric for Reeb graphs of orientable surfaces in terms of the cost necessary to transform one graph into another by edit operations. The main contributions of this paper are the stability property and the optimality of this edit distance. More precisely, the stability result states that changes in the functions, measured by the maximum norm, imply not greater changes in the corresponding Reeb graphs, measured by the edit distance. The optimality result states that our edit distance discriminates Reeb graphs better than any other metric for Reeb graphs of surfaces satisfying the stability property.
The Discrete Morse Theory of Forman appeared to be useful for providing filtration-preserving reductions of complexes in the study of persistent homology. So far, the algorithms computing discrete Morse matchings have only been used for one-dimension al filtrations. This paper is perhaps the first attempt in the direction of extending such algorithms to multidimensional filtrations. Initial framework related to Morse matchings for the multidimensional setting is proposed, and a matching algorithm given by King, Knudson, and Mramor is extended in this direction. The correctness of the algorithm is proved, and its complexity analyzed. The algorithm is used for establishing a reduction of a simplicial complex to a smaller but not necessarily optimal cellular complex. First experiments with filtrations of triangular meshes are presented.
Multidimensional persistence modules do not admit a concise representation analogous to that provided by persistence diagrams for real-valued functions. However, there is no obstruction for multidimensional persistent Betti numbers to admit one. Ther efore, it is reasonable to look for a generalization of persistence diagrams concerning those properties that are related only to persistent Betti numbers. In this paper, the persistence space of a vector-valued continuous function is introduced to generalize the concept of persistence diagram in this sense. The main result is its stability under function perturbations: any change in vector-valued functions implies a not greater change in the Hausdorff distance between their persistence spaces.
We consider generic curves in R^2, i.e. generic C^1 functions f from S^1 to R^2. We analyze these curves through the persistent homology groups of a filtration induced on S^1 by f. In particular, we consider the question whether these persistent homo logy groups uniquely characterize f, at least up to re-parameterizations of S^1. We give a partially positive answer to this question. More precisely, we prove that f=goh, where h:S^1-> S^1 is a C^1-diffeomorphism, if and only if the persistent homology groups of sof and sog coincide, for every s belonging to the group Sigma_2 generated by reflections in the coordinate axes. Moreover, for a smaller set of generic functions, we show that f and g are close to each other in the max-norm (up to re-parameterizations) if and only if, for every s belonging to Sigma_2, the persistent Betti numbers functions of sof and sog are close to each other, with respect to a suitable distance.
The Hausdorff distance, the Gromov-Hausdorff, the Frechet and the natural pseudo-distances are instances of dissimilarity measures widely used in shape comparison. We show that they share the property of being defined as $inf_rho F(rho)$ where $F$ is a suitable functional and $rho$ varies in a set of correspondences containing the set of homeomorphisms. Our main result states that the set of homeomorphisms cannot be enlarged to a metric space $mathcal{K}$, in such a way that the composition in $mathcal{K}$ (extending the composition of homeomorphisms) passes to the limit and, at the same time, $mathcal{K}$ is compact.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا