ترغب بنشر مسار تعليمي؟ اضغط هنا

138 - Claude Roiesnel 2012
In the continuum the definitions of the covariant Dirac operator and of the gauge covariant derivative operator are tightly intertwined. We point out that the naive discretization of the gauge covariant derivative operator is related to the existence of local unitary operators which allow the definition of a natural lattice gauge covariant derivative. The associated lattice Dirac operator has all the properties of the classical continuum Dirac operator, in particular antihermiticy and chiral invariance in the massless limit, but is of course non-local in accordance to the Nielsen-Ninomiya theorem. We show that this lattice Dirac operator coincides in the limit of an infinite lattice volume with the naive gauge covariant generalization of the SLAC derivative, but contains non-trivial boundary terms for finite-size lattices. Its numerical complexity compares pretty well on finite lattices with smeared lattice Dirac operators.
We study the doubly virtual Compton scattering off a spinless target $gamma^*Ptogamma^*P$ within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا