ترغب بنشر مسار تعليمي؟ اضغط هنا

The renormalization group technique is applied to one-dimensional electron-phonon Hubbard models at half-filling and zero temperature. For the Holstein-Hubbard model, the results of one-loop calculations are congruent with the phase diagram obtained by quantum Monte Carlo simulations in the $(U,g_{rm ph})$ plane for the phonon-mediated interaction $g_{rm ph}$ and the Coulomb interaction $U$. The incursion of an intermediate phase between a fully gapped charge-density-wave state and a Mott antiferromagnet is supported along with the growth of its size with the molecular phonon frequency $omega_0$. We find additional phases enfolding the base boundary of the intermediate phase. A Luttinger liquid line is found below some critical $ U^*approx g^*_{rm ph}$, followed at larger $Usim g_{rm ph}$ by a narrow region of bond-order-wave ordering which is either charge or spin gapped depending on $U$. For the Peierls-Hubbard model, the region of the $(U,g_{rm ph})$ plane with a fully gapped Peierls-bond-order-wave state shows a growing domination over the Mott gapped antiferromagnet as the Debye frequency $omega_D$ decreases. A power law dependence $g_{rm ph} sim U^{2eta}$ is found to map out the boundary between the two phases, whose exponent is in good agreement with the existing quantum Monte Carlo simulations performed when a finite nearest-neighbor repulsion term $V$ is added to the Hubbard interaction.
We use the renormalization group method to examine the effect of phonon mediated interaction on d-wave superconductivity, as driven by spin fluctuations in a quasi-one-dimensional electron system. The influence of a tight-binding electron-phonon inte raction on the spin-density-wave and d-wave superconducting instability lines is calculated for arbitrary temperature, phonon frequency and antinesting of the Fermi surface.The domain of electron-phonon coupling strength where spin-density-wave order becomes unstable against the formation of a bond-order-wave or Peierls state is determined at weak antinesting. We show the existence of a positive isotope effect for spin-density-wave and d-wave superconducting critical temperatures which scales with the antinesting distance from quantum critical point where the two instabilities merge. We single out a low phonon frequency zone where the bond-oder-wave ordering gives rise to triplet f-wave superconductivity under nesting alteration, with both orderings displaying a negative isotope effect. We also study the electron-phonon strengthening of spin fluctuations at the origin of extended quantum criticality in the metallic phase above superconductivity. The impact of our results on quasi-one-dimensional organic conductors like the Bechgaard salts where a Peierls distortion is absent and superconductivity emerges near a spin-density-wave state under pressure is emphasized.
Upper critical field, H_c2, in quasi-1D superconductors is investigated by the weak coupling renormalization group technique. It is shown that H_c2 greatly exceeds not only the Pauli limit, but also the conventional paramagnetic limit of the Flude-Fe rrell-Larkin-Ovchinnikov (FFLO) state. This increase is mainly due to quasi-1D fluctuations effect as triggered by interference between unconventional superconductivity and density-wave instabilities. Our results give a novel viewpoint on the large H_c2 observed in TMTSF-salts in terms of a d-wave FFLO state that is predicted to be verified by the H_c2 measurements under pressure.
We report an ultrasonic study of the magneto-elastic coupling of the hydrogenated and deuterated (TMTTF)$_2$PF$_6$ organic salts. For both salts the temperature dependence of the longitudinal velocity along the c* axis displays a monotonic stiffening of the $C_{33}$ compressibility modulus upon cooling. Below the characteristic temperature scale 40 K the modulus stiffening becomes markedly enhanced, in concomitance with the reduction of spin degrees of freedom previously seen in magnetic measurements as low dimensional precursors of the spin-Peierls transition. The magneto-elastic coupling appears to be much weaker in the hydrogenated salt due to the highly inhomogeneous elastic behavior induced by the proximity of the charge ordering transition to the spin-Peierls phase. For the deuterated salt, an important anomaly in the ultrasound velocity is observed below the spin-Peierls transition temperature $T_{rm SP}$ in agreement with scaling of the elastic deformation with the spin-Peierls order parameter. In spite of the weakly inhomogeneous character of the spin-Peierls phase transition, the magnetic field dependence of $T_{rm SP}$ is well captured with the mean-field prediction for the lattice distorted Heisenberg spin chain.
We report a study of the 16.5 GHz dielectric function of hydrogenated and deuterated organic salts (TMTTF)$_2$PF$_6$. The temperature behavior of the dielectric function is consistent with short-range polar order whose relaxation time decreases rapid ly below the charge ordering temperature. If this transition has more a relaxor character in the hydrogenated salt, charge ordering is strengthened in the deuterated one where the transition temperature has increased by more than thirty percent. Anomalies in the dielectric function are also observed in the spin-Peierls ground state revealing some intricate lattice effects in a temperature range where both phases coexist. The variation of the spin-Peierls ordering temperature under magnetic field appears to follow a mean-field prediction despite the presence of spin-Peierls fluctuations over a very wide temperature range in the charge ordered state of these salts.
In this tutorial we will tackle the problem of electronic correlations in quasi-one-dimensional organic superconductors. We will go through different pieces of experimental evidence showing the range of applicability of the Fermi and Luttinger liquid descriptions of the normal phase of the Bechgaard salts series and their sulfur analogs.
A theoretical approach to the influence of one-dimensional lattice fluctuations on electronic properties in weakly localized spin-Peierls systems is proposed using the renormalization group and the functional integral techniques. The interplay betwee n the renormalization group flow of correlated electrons and one-dimensional lattice fluctuations is taken into account by the one-dimensional functional integral method in the adiabatic limit. Calculations of spin-Peierls precursor effects on response functions are carried out explicitely and the prediction for the temperature dependent magnetic susceptibility and nuclear relaxation is compared with available experimental data for (TMTTF)$_{2}$PF$_{6}$.
The stability of the Luttinger liquid to small transverse hopping has been studied from several points of view. The renormalization group approach in particular has been criticized because it does not take explicitly into account the difference betwe en spin and charge velocities and because the interaction should be turned-on before the transverse hopping if the stability of the Luttinger liquid is a non-perturbative effect. An approach that answers both of these objections is explained here. It shows that the Luttinger liquid is unstable to arbitrarily small transverse hopping. The crossover temperatures below which either transverse coherent band motion or long-range order start to develop can be finite even when spin and charge velocities differ. Explicit scaling relations for these one-particle and two-particle crossover temperatures are derived in terms of transverse hopping, spin and charge velocities and anomalous exponents. The renormalization group results are recovered as special cases when spin and charge velocities are identical. The results compare well with recent experiments presented at this conference. Magnetic field effects are alluded to.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا