ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a general frame to extend functional renormalization group (fRG) based computational schemes by using an exactly solvable interacting reference problem as starting point for the RG flow. The systematic expansion around this solution accoun ts for a non-perturbative inclusion of correlations. Introducing auxiliary fermionic fields by means of a Hubbard-Stratonovich transformation, we derive the flow equations for the auxiliary fields and determine the relation to the conventional weak-coupling truncation of the hierarchy of flow equations. As a specific example we consider the dynamical mean-field theory (DMFT) solution as reference system, and discuss the relation to the recently introduced DMF$^2$RG and the dual-fermion formalism.
We have implemented the $GW$+dynamical mean field theory (DMFT) approach in the Vienna ab initio simulation package. Employing the interaction values obtained from the locally unscreened random phase approximation (RPA), we compare $GW$+DMFT and LDA+ DMFT against each other and against experiment for SrVO$_3$. We observed a partial compensation of stronger electronic correlations due to the reduced $GW$ bandwidth and weaker correlations due to a larger screening of the RPA interaction, so that the obtained spectra are quite similar and well agree with experiment. Noteworthily, the $GW$+DMFT better reproduces the position of the lower Hubbard side band.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا