ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological spin liquids in two spatial dimensions are stable phases in the presence of a small magnetic field, but may give way to field-induced phenomena at intermediate field strengths. Sandwiched between the low-field spin liquid physics and the high-field spin-polarized phase, the exploration of magnetic phenomena in this intermediate regime however often remains elusive to controlled analytical approaches. Here we numerically study such intermediate-field magnetic phenomena for two representative Kitaev models (on the square-octagon and decorated honeycomb lattice) that exhibit either Abelian or non-Abelian topological order in the low-field limit. Using a combination of exact diagonalization and density matrix renormalization group techniques, as well as linear spin-wave theory, we establish the generic features of Kitaev spin liquids in an external magnetic field. While ferromagnetic models typically exhibit a direct transition to the polarized state at a relatively low field strength, antiferromagnetic couplings not only substantially stabilizes the topological spin liquid phase, but generically lead to the emergence of a distinct field-induced intermediate regime, separated by a crossover from the high-field polarized regime. Our results suggest that, for most lattice geometries, this regime generically exhibits significant spin canting, antiferromagnetic spin-spin correlations, and an extended proximate spin liquid regime at finite temperatures. Notably, we identify a symmetry obstruction in the original honeycomb Kitaev model that prevents, at least for certain field directions, the formation of such canted magnetism without breaking symmetries -- consistent with the recent numerical observation of an extended gapless spin liquid in this case.
Magnetic fields can give rise to a plethora of phenomena in Kitaev spin systems, such as the formation of non-trivial spin liquids in two and three spatial dimensions. For the original honeycomb Kitaev model, it has recently been observed that the si gn of the bond-directional exchange is of crucial relevance for the field-induced physics, with antiferromagnetic couplings giving rise to an intermediate spin liquid regime between the low-field gapped Kitaev spin liquid and the high-field polarized state, which is not present in the ferromagnetically coupled model. Here, by employing a Majorana mean-field approach for a magnetic field pointing along the [001] direction, we present a systematic study of field-induced spin liquid phases for a variety of two and three-dimensional lattice geometries. We find that antiferromagnetic couplings generically lead to (i) spin liquid phases that are considerably more stable in field than those for ferromagnetic couplings, and (ii) an intermediate spin liquid phase which arises from a change in the topology of the Majorana band structure. Close inspection of the mean-field parameters reveal that the intermediate phase occurs due to a field-driven sign change in an effective $z$-bond energy parameter. Our results clearly demonstrate the richness of the Majorana physics of the antiferromagnetic Kitaev models, in comparison to their ferromagnetic counterparts.
Recent proposals for spin-1 Kitaev materials, such as honeycomb Ni oxides with heavy elements of Bi and Sb, have shown that these compounds naturally give rise to antiferromagnetic (AFM) Kitaev couplings. Conceptual interest in such AFM Kitaev system s has been sparked by the observation of a transition to a gapless $U(1)$ spin liquid at intermediate field strengths in the AFM spin-1/2 Kitaev model. However, all hitherto known spin-1/2 Kitaev materials exhibit ferromagnetic bond-directional exchanges. Here we discuss the physics of the spin-1 Kitaev model in a magnetic field and show, by extensive numerical analysis, that for AFM couplings it exhibits an extended gapless quantum spin liquid at intermediate field strengths. The close analogy to its spin-1/2 counterpart suggests that this gapless spin liquid is a $U(1)$ spin liquid with a neutral Fermi surface, that gives rise to enhanced thermal transport signatures.
Twisting moire heterostructures to the flatband regime allows for the formation of strongly correlated quantum states, since the dramatic reduction of the bandwidth can cause the residual electronic interactions to set the principal energy scale. An effective description for such correlated moire heterostructures, derived in the strong-coupling limit at integer filling, generically leads to spin-valley Heisenberg models. Here we explore the emergence and stability of spin liquid behavior in an SU(2)$^{mathrm{spin}}otimes$SU(2)$^{mathrm{valley}}$ Heisenberg model upon inclusion of Hunds-induced and longer-ranged exchange couplings, employing a pseudofermion functional renormalization group approach. We consider two lattice geometries, triangular and honeycomb (relevant to different moire heterostructures), and find, for both cases, an extended parameter regime surrounding the SU(4) symmetric point where no long-range order occurs, indicating a stable realm of quantum spin liquid behavior. For large Hunds coupling, we identify the adjacent magnetic orders, with both antiferromagnetic and ferromagnetic ground states emerging in the separate spin and valley degrees of freedom. For both lattice geometries the inclusion of longer-ranged exchange couplings is found to have both stabilizing and destabilizing effects on the spin liquid regime depending on the sign of the additional couplings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا