ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider an agent interacting with an unmodeled environment. At each time, the agent makes an observation, takes an action, and incurs a cost. Its actions can influence future observations and costs. The goal is to minimize the long-term average c ost. We propose a novel algorithm, known as the active LZ algorithm, for optimal control based on ideas from the Lempel-Ziv scheme for universal data compression and prediction. We establish that, under the active LZ algorithm, if there exists an integer $K$ such that the future is conditionally independent of the past given a window of $K$ consecutive actions and observations, then the average cost converges to the optimum. Experimental results involving the game of Rock-Paper-Scissors illustrate merits of the algorithm.
We consider a trader who aims to liquidate a large position in the presence of an arbitrageur who hopes to profit from the traders activity. The arbitrageur is uncertain about the traders position and learns from observed price fluctuations. This is a dynamic game with asymmetric information. We present an algorithm for computing perfect Bayesian equilibrium behavior and conduct numerical experiments. Our results demonstrate that the traders strategy differs significantly from one that would be optimal in the absence of the arbitrageur. In particular, the trader must balance the conflicting desires of minimizing price impact and minimizing information that is signaled through trading. Accounting for information signaling and the presence of strategic adversaries can greatly reduce execution costs.
We establish that the min-sum message-passing algorithm and its asynchronous variants converge for a large class of unconstrained convex optimization problems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا