ترغب بنشر مسار تعليمي؟ اضغط هنا

Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known as bulk-dislocation correspondence, in contrast to the conventional bulk-boundary correspondence featuring topological states at boundaries. However, to date rare compelling experimental evidences are presented for this intriguing topological observable, owing to the presence of various challenges in solid-state systems. Here, using a three-dimensional acoustic topological insulator with precisely controllable dislocations, we report an unambiguous experimental evidence for the long-desired bulk-dislocation correspondence, through directly measuring the gapless dispersion of the one-dimensional topological dislocation modes. Remarkably, as revealed in our further experiments, the pseudospin-locked dislocation modes can be unidirectionally guided in an arbitrarily-shaped dislocation path. The peculiar topological dislocation transport, expected in a variety of classical wave systems, can provide unprecedented controllability over wave propagations.
A quadrupole topological insulator, being one higher-order topological insulator with nontrivial quadrupole quantization, has been intensely investigated very recently. However, the tight-binding model proposed for such emergent topological insulator s demands both positive and negative hopping coefficients, which imposes an obstacle in practical realizations. Here we introduce a feasible approach to design the sign of hopping in acoustics, and construct the first acoustic quadrupole topological insulator that stringently emulates the tight-binding model. The inherent hierarchy quadrupole topology has been experimentally confirmed by detecting the acoustic responses at the bulk, edge and corner of the sample. Potential applications can be anticipated for the topologically robust in-gap states, such as acoustic sensing and energy trapping.
Dirac semimetals, the materials featured with discrete linearly crossing points (called Dirac points) between four bands, are critical states of topologically distinct phases. Such gapless topological states have been accomplished by a band-inversion mechanism, in which the Dirac points can be annihilated pairwise by perturbations without changing the symmetry of the system. Here, we report an experimental observation of Dirac points that are enforced completely by the crystal symmetry, using a nonsymmorphic three-dimensional phononic crystal. Intriguingly, our Dirac phononic crystal hosts four spiral topological surface states, in which the surface states of opposite helicities intersect gaplessly along certain momentum lines, as confirmed by our further surface measurements. The novel Dirac system may release new opportunities for studying the elusive (pseudo)relativistic physics, and also offer a unique prototype platform for acoustic applications.
Very recently, novel quasiparticles beyond those mimicking the elementary high-energy particles such as Dirac and Weyl fermions have attracted great interest in condensed matter physics and materials science1-9. Here we report the first experimental observation of the long-desired quadratic Weyl points10 by using a three-dimensional chiral metacrystal of sound waves. Markedly different from the newly observed unconventional quasiparticles5-9, such as the spin-1 Weyl points and the charge-2 Dirac points that are featured respectively with threefold and fourfold band crossings, the charge-2 Weyl points identified here are simply twofold degenerate, and the dispersions around them are quadratic in two directions and linear in the third one10. Besides the essential nonlinear bulk dispersions, we further unveil the exotic double-helicoid surface arcs that emanate from a projected quadratic Weyl point and terminate at two projected conventional Weyl points through Fourier transformation of the scanned surface fields. This unique global surface connectivity provides conclusive evidence for the double topological charges of such unconventional topological nodes.
Recently, intense efforts have been devoted to realizing classical analogues of various topological phases of matter. In this Letter, we explore the intriguing Weyl physics by a simple one-dimensional sonic crystal, in which two extra structural para meters are combined to construct a synthetic three-dimensional space. Based on our underwater ultrasonic experiments, we have not only observed the synthetic Weyl points directly, but also probed the novel reflection phase singularity that connects inherently with the topological robustness of Weyl points. As a smoking gun evidence of the topological states of matter, the presence of nontrivial interface modes has been demonstrated further. All experimental data agree well with our full-wave simulations. As the first realization of topological acoustics in synthetic space, our study exhibits great potential of probing high-dimensional topological phenomena by such easily-fabricated and -detected low-dimension acoustic systems.
Reflection and refraction occur at interface between two different media. These two fundamental phenomena form the basis of fabricating various wave components. Specifically, refraction, dubbed positive refraction nowadays, appears in the opposite si de of the interface normal with respect to the incidence. Negative refraction, emerging in the same side by contrast, has been observed in artificial materials1-5 following a prediction by Veslago6, which has stimulated many fascinating applications such as super-resolution imaging7. Here we report the first discovery of negative refraction of the topological surface arc states of Weyl crystals, realized for airborne sound in a novel woodpile phononic crystal. The interfaces are one-dimensional edges that separate different crystal facets. By tailoring the surface terminations of such a Weyl phononic crystal, open equifrequency contours of surface acoustic waves can be delicately designed to produce the negative refraction, to contrast the positive counterpart realized in the same sample. Strikingly different from the conventional interfacial phenomena, the unwanted reflection can be made forbidden by exploiting the open nature of the surface equifrequency contours, which is a topologically protected surface hallmark of Weyl crystals8-12.
Recently, the topological physics in acoustics has been attracting much attention. However, all the studies are aimed to elastic or airborne sound systems. Realizing topological insulators for underwater sound is of great importance, since water is a nother crucial sound medium in addition to solid and air. Here we report an experimental study on the valley-projected edge states for underwater sound. The edge states are directly observed in our ultrasound scanning experiments, together with a solid evidence for the valley-selective excitation. The experimental data agree well with our numerical results. Prospective applications can be anticipated, such as for underwater sound signal processing and ocean noise control.
Many intriguing phenomena occur for electrons under strong magnetic fields. Recently, it was proposed that an appropriate strain texture in graphene can induce a synthetic gauge field, in which the electrons behave like in a real magnetic field. This opened the door to control quantum transport by mechanical means and to explore unprecedented physics in high-field regime. Such studies have been achieved in molecular and photonic lattices. Here we report the first experimental realization of giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to acoustic graphene. Benefited from the controllability of our macroscopic platform, we observe the acoustic Landau levels in frequency-resolved spectroscopy and their spatial localization in pressure-field distributions. We further visualize the quantum-Hall-like edge states (connected to the zeroth Landau level), which have been elusive before owing to the challenge in creating large-area uniform pseudomagnetic fields. These results, highly consistent with our full-wave simulations, establish a complete framework for artificial structures under constant pseudomagnetic fields. Our findings, conceptually novel in acoustics, may offer new opportunities to manipulate sound.
Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of t riangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge states that propagate along the interfaces separating different topological phases. Various applications such as sound communications in integrated devices, can be anticipated by the intriguing acoustic edge states enriched by the layer information.
The artificial crystals for classical waves provide a good platform to explore the topological physics proposed originally in condensed matter systems. In this paper, acoustic Dirac degeneracy is realized by simply rotating the scatterers in sonic cr ystals, where the degeneracy is induced accidentally by modulating the scattering strength among the scatterers during the rotation process. This gives a flexible way to create topological phase transition in acoustic systems. Edge states are further observed along the interface separating two topologically distinct gapped sonic crystals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا