ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate an unusual symmetry of Fe-based superconductors (FeSCs) and find novel superconducting pairing structures. FeSCs have a minimal translational unit cell composed of two Fe atoms due to the staggered positions of anions with respect to t he Fe plane. We study the physical consequences of the additional glide symmetry that further reduces the unit cell to have only one Fe atoms. In the regular momentum space, it not only leads to a particular orbital parity separated spectral function but also dictates orbital parity distinct pairing structures. Furthermore, it produces accompanying Cooper pairs of $(pi,pi,0)$ momentum, which have a characteristic textit{odd} form factor and break time reversal symmetry. Such novel pairing structures explain the unusual angular modulations of the superconducting gaps on the hole pockets in recent ARPES and STS experiments.
Renormalization of non-magnetic impurity potential by strong electron correlation is investigated in detail. We adopt the t-t-t-J model and consider mainly a delta-function impurity potential. The variational Monte Carlo method shows that impurity po tential scattering matrix elements between Gutzwiller-projected quasi-particle excited states are as strongly renormalized as the hopping terms. Such renormalization is also seen by the Bogoliubov-de Gennes equation with an impurity, where the strong correlation is treated by a Gutzwiller mean-field theory with local Gutzwiller factors and local chemical potentials. Namely, the delta-function potential is effectively weakened and broadened. We emphasize the importance of including the local chemical potential, which is paid little attention to in the literature, by physical consideration of the doping dependence of a local hole density. We also investigate effect of smooth impurity potential variation; the strong correlation yields anticorrelation between the gap energy and the coherence peak height simultaneously with large gap distribution, which is consistent with the experiments.
Recent STM measurements have observed many inhomogeneous patterns of the local density of states on the surface of high-T_c cuprates. As a first step to study such disordered strong correlated systems, we use the BdG equation for the t-t-t-J model wi th an impurity. The impurity is taken into account by a local potential or local variation of the hopping/exchange terms. Strong correlation is treated by a Gutzwiller mean-field theory with local Gutzwiller factors and local chemical potentials. It turned out that the potential impurity scattering is greatly suppressed, while the local variation of hoppings/exchanges is enhanced.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا