ترغب بنشر مسار تعليمي؟ اضغط هنا

217 - Chun Shen 2014
The iEBE-VISHNU code package performs event-by-event simulations for relativistic heavy-ion collisions using a hybrid approach based on (2+1)-dimensional viscous hydrodynamics coupled to a hadronic cascade model. We present the detailed model impleme ntation, accompanied by some numerical code tests for the package. iEBE-VISHNU forms the core of a general theoretical framework for model-data comparisons through large scale Monte-Carlo simulations. A numerical interface between the hydrodynamically evolving medium and thermal photon radiation is also discussed. This interface is more generally designed for calculations of all kinds of rare probes that are coupled to the temperature and flow velocity evolution of the bulk medium, such as jet energy loss and heavy quark diffusion.
Photons are a penetrating probe of the hot medium formed in heavy-ion collisions, but they are emitted from all collision stages. At photon energies below 2-3 GeV, the measured photon spectra are approximately exponential and can be characterized by their inverse logarithmic slope, often called effective temperature $T_mathrm{eff}$. Modelling the evolution of the radiating medium hydrodynamically, we analyze the factors controlling the value of $T_mathrm{eff}$ and how it is related to the evolving true temperature $T$ of the fireball. We find that at RHIC and LHC energies most photons are emitted from fireball regions with $T{,sim,}T_mathrm{c}$ near the quark-hadron phase transition, but that their effective temperature is significantly enhanced by strong radial flow. Although a very hot, high pressure early collision stage is required for generating this radial flow, we demonstrate that the experimentally measured large effective photon temperatures $T_mathrm{eff}{,>,}T_mathrm{c}$, taken alone, do not prove that any electromagnetic radiation was actually emitted from regions with true temperatures well above $T_mathrm{c}$. We explore tools that can help to provide additional evidence for the relative weight of photon emission from the early quark-gluon and late hadronic phases. We find that the recently measured centrality dependence of the total thermal photon yield requires a larger contribution from late emission than presently encoded in our hydrodynamic model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا