ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitons, composite electron-hole quasiparticles, are known to play an important role in optoelectronic phenomena in many semiconducting materials. Recent experiments and theory indicate that the band-gap optics of the newly discovered monolayer tran sition-metal dichalcogenides (TMDs) is dominated by tightly bound valley excitons. The strong interaction of excitons with long-range electromagnetic fields in these 2D systems can significantly affect their intrinsic properties. Here, we develop a semi-classical framework for intrinsic exciton-polaritons in monolayer TMDs that treats their dispersion and radiative decay on the same footing and can incorporate effects of the dielectric environment. It is demonstrated how both inter- and intra-valley long-range interactions influence the dispersion and decay of the polaritonic eigenstates. We also show that exciton-polaritons can be efficiently excited via resonance energy transfer from quantum emitters such as quantum dots, which may be useful for various applications.
The non-Abelian gauge fields play a key role in achieving novel quantum phenomena in condensed-matter and high-energy physics. Recently, the synthetic non-Abelian gauge fields have been created in the neutral degenerate Fermi gases, and moreover, gen erate many exotic effects. All the previous predictions can be well understood by the microscopic Bardeen-Cooper-Schrieffer theory. In this work, we establish an SU(2) Ginzburg-Landau theory for degenerate Fermi gases with the synthetic non-Abelian gauge fields. We firstly address a fundamental problem how the non-Abelian gauge fields, imposing originally on the Fermi atoms, affect the pairing field with no extra electric charge by a local gauge-field theory,and then obtain the first and second SU(2) Ginzburg-Landau equations. Based on these obtained SU(2) Ginzburg-Landau equations, we find that the superfluid critical temperature of the intra- (inter-) band pairing increases (decreases) linearly, when increasing the strength of the synthetic non-Abelian gauge fields. More importantly, we predict a novel SU(2) non-Abelian Josephson effect, which can be used to design a new atomic superconducting quantum interference device.
224 - Fei Lin , Chuanwei Zhang , 2013
Recent ultracold atomic gas experiments implementing synthetic spin-orbit coupling allow access to flatbands that emphasize interactions. We model spin-orbit coupled fermions in a one-dimensional flatband optical lattice. We introduce an effective Lu ttinger-liquid theory to show that interactions generate collective excitations with emergent kinetics and fractionalized charge, analogous to properties found in the two-dimensional fractional quantum Hall regime. Observation of these excitations would provide an important platform for exploring exotic quantum states derived solely from interactions.
We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultra-cold bosonic atoms in a double well optical lattice through slow and periodic modulation of the lattice parameters (intra- and inter-well t unneling, chemical potential, etc.). The transport of atoms does not depend on the rate of change of the parameters (as along as the change is slow) and can distribute atoms in optical lattices at the quantized level without involving external forces. The transport of atoms depends on the atom filling in each double well and the interaction between atoms. In the strongly interacting region, the bosonic atoms share the same transport properties as non-interacting fermions with quantized transport at the half filling and no atom transport at the integer filling. In the weakly interacting region, the number of the transported atoms is proportional to the atom filling. We show the signature of the quantum transport from the momentum distribution of atoms that can measured in the time of flight image. A semiclassical transport model is developed to explain the numerically observed transport of bosonic atoms in the non-interacting and strongly interacting limits. The scheme may serve as an quantized battery for atomtronics applications.
We analyze a system of fermionic $^{6}$Li atoms in an optical trap, and show that an atom on demand can be prepared with ultra-high fidelity, exceeding 0.99998. This process can be scaled to many sites in parallel, providing a realistic method to ini tialize N qubits at ultra-high fidelity for quantum computing. We also show how efficient quantum gate operation can be implemented in this system, and how spatially resolved single-atom detection can be performed.
Two-dimensional ($p_{x}+ip_{y}$) superfluids/superconductors offer a playground for studying intriguing physics such as quantum teleportation, non-Abelian statistics, and topological quantum computation. Creating such a superfluid in cold fermionic a tom optical traps using p-wave Feshbach resonance is turning out to be challenging. Here we propose a method to create a $p_{x}+ip_{y}$ superfluid directly from an s-wave interaction making use of a topological Berry phase, which can be artificially generated. We discuss ways to detect the spontaneous Hall mass current, which acts as a diagnostic for the chiral p-wave superfluid.
We show that the breakdown of time-reversal invariance, confirmed by the recent polar Kerr effect measurements in the cuprates, implies the existence of an anomalous Nernst effect in the pseudogap phase of underdoped cuprate superconductors. Modeling the time-reversal-breaking ordered state by the chiral d-density-wave state, we find that the magnitude of the Nernst effect can be sizable even at temperatures much higher than the superconducting transition temperature. These results imply that the experimentally found Nernst effect at the pseudogap temperatures may be due to the chiral d-density wave ordered state with broken time-reversal invariance.
We show that a new state of matter, the d-wave Mott-insulator state (d-Mott state) (introduced recently by [H. Yao, W. F. Tsai, and S. A. Kivelson, Phys. Rev. B 76, 161104 (2007)]), which is characterized by a non-zero expectation value of a local pl aquette operator embedded in an insulating state, can be engineered using ultra-cold atomic fermions in two-dimensional double-well optical lattices. We characterize and analyze the parameter regime where the $d$-Mott state is stable. We predict the testable signatures of the state in the time-of-flight measurements.
Using a phenomenological Ginzburg-Landau theory for the magnetic conical cycloid state of a multiferroic, which has been recently reported in the cubic spinel CoCr$_{2}$O$_{4}$, we discuss its low-energy fluctuation spectrum. We identify the Goldston e modes of the conical cycloidal order, and deduce their dispersion relations whose signature anisotropy in momentum space reflects the symmetries broken by the ordered state. We discuss the soft polarization fluctuations, the `electromagnons, associated with these magnetic modes and make several experimental predictions which can be tested in neutron scattering and optical experiments.
We show that the cycloidal magnetic order of a multiferroic can arise in the absence of spin and lattice anisotropies, for e.g., in a cubic material, and this explains the occurrence of such a state in CoCr$_2$O$_4$. We discuss the case when this ord er coexists with ferromagnetism in a so called `conical cycloid state, and show that a direct transition to this state from the ferromagnet is necessarily first order. On quite general grounds, the reversal of the direction of the uniform magnetization in this state can lead to the reversal of the electric polarization as well, without the need to invoke `toroidal moment as the order parameter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا