ترغب بنشر مسار تعليمي؟ اضغط هنا

The radiation pressure of two detuned laser beams can create a stable trap for a suspended cavity mirror; here it is shown that such a configuration entangles the output light fields via interaction with the mirror. Intra-cavity, the opto-mechanical system can become entangled also. The degree of entanglement is quantified spectrally using the logarithmic negativity. Entanglement survives in the experimentally accessible regime of gram-scale masses subject to thermal noise at room temperature.
We report on use of a radiation pressure induced restoring force, the optical spring effect, to optically dilute the mechanical damping of a 1 gram suspended mirror, which is then cooled by active feedback (cold damping). Optical dilution relaxes the limit on cooling imposed by mechanical losses, allowing the oscillator mode to reach a minimum temperature of 6.9 mK, a factor of ~40000 below the environmental temperature. A further advantage of the optical spring effect is that it can increase the number of oscillations before decoherence by several orders of magnitude. In the present experiment we infer an increase in the dynamical lifetime of the state by a factor of ~200.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا