ترغب بنشر مسار تعليمي؟ اضغط هنا

As part of the SLUGGS survey, we stack 1137 Keck DEIMOS spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal to noise ratios of $sim 90$ AA$^{-1}$. Besides the calcium trip let, we study weaker sodium, magnesium, titanium and iron lines as well as the H$alpha$ and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet--colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour--metallicity relation between galaxies. Two possible explanations for the colour--metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stacking spectra by magnitude, we see that the colours become redder and metal line indices stronger with brighter magnitudes. These trends are consistent with the previously reported `blue tilts being mass--metallicity relations.
Although the colour distribution of globular clusters in massive galaxies is well known to be bimodal, the spectroscopic metallicity distribution has been measured in only a few galaxies. After redefining the calcium triplet index-metallicity relatio n, we use our relation to derive the metallicity of 903 globular clusters in 11 early-type galaxies. This is the largest sample of spectroscopic globular cluster metallicities yet assembled. We compare these metallicities with those derived from Lick indices finding good agreement. In 6 of the 8 galaxies with sufficient numbers of high quality spectra we find bimodality in the spectroscopic metallicity distribution. Our results imply that most massive early-type galaxies have bimodal metallicity, as well as colour, distributions. This bimodality suggests that most massive galaxies early-type galaxies experienced two periods of star formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا