ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper presents a new probabilistic generative model for image segmentation, i.e. the task of partitioning an image into homogeneous regions. Our model is grounded on a mid-level image representation, called a region tree, in which regions are re cursively split into subregions until superpixels are reached. Given the region tree, image segmentation is formalized as sampling cuts in the tree from the model. Inference for the cuts is exact, and formulated using dynamic programming. Our tree-cut model can be tuned to sample segmentations at a particular scale of interest out of many possible multiscale image segmentations. This generalizes the common notion that there should be only one correct segmentation per image. Also, it allows moving beyond the standard single-scale evaluation, where the segmentation result for an image is averaged against the corresponding set of coarse and fine human annotations, to conduct a scale-specific evaluation. Our quantitative results are comparable to those of the leading gPb-owt-ucm method, with the notable advantage that we additionally produce a distribution over all possible tree-consistent segmentations of the image.
Large astronomical databases obtained from sky surveys such as the SuperCOSMOS Sky Surveys (SSS) invariably suffer from a small number of spurious records coming from artefactual effects of the telescope, satellites and junk objects in orbit around e arth and physical defects on the photographic plate or CCD. Though relatively small in number these spurious records present a significant problem in many situations where they can become a large proportion of the records potentially of interest to a given astronomer. In this paper we focus on the four most common causes of unwanted records in the SSS: satellite or aeroplane tracks, scratches fibres and other linear phenomena introduced to the plate, circular halos around bright stars due to internal reflections within the telescope and diffraction spikes near to bright stars. Accurate and robust techniques are needed for locating and flagging such spurious objects. We have developed renewal strings, a probabilistic technique combining the Hough transform, renewal processes and hidden Markov models which have proven highly effective in this context. The methods are applied to the SSS data to develop a dataset of spurious object detections, along with confidence measures, which can allow this unwanted data to be removed from consideration. These methods are general and can be adapted to any future astronomical survey data.
Gaussian process (GP) predictors are an important component of many Bayesian approaches to machine learning. However, even a straightforward implementation of Gaussian process regression (GPR) requires O(n^2) space and O(n^3) time for a dataset of n examples. Several approximation methods have been proposed, but there is a lack of understanding of the relative merits of the different approximations, and in what situations they are most useful. We recommend assessing the quality of the predictions obtained as a function of the compute time taken, and comparing to standard baselines (e.g., Subset of Data and FITC). We empirically investigate four different approximation algorithms on four different prediction problems, and make our code available to encourage future comparisons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا