ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Q microwave cavity modes coupled to transmon ancillas provide a hardware-efficient platform for quantum computing. Due to their coupling, the cavity modes inherit finite nonlinearity from the transmons. In this work, we theoretically and experim entally investigate how an off-resonant drive on the transmon ancilla modifies the nonlinearities of cavity modes in qualitatively different ways, depending on the interrelation among cavity-transmon detuning, drive-transmon detuning and transmon anharmonicity. For a cavity-transmon detuning that is smaller than or comparable to the drive-transmon detuning and transmon anharmonicity, the off-resonant transmon drive can induce multiphoton resonances among cavity and transmon excitations that strongly modify cavity nonlinearities as drive parameters vary. For a large cavity-transmon detuning, the drive induces cavity-photon-number-dependent ac Stark shifts of transmon levels that translate into effective cavity nonlinearities. In the regime of weak transmon-cavity coupling, the cavity Kerr nonlinearity relates to the third-order nonlinear susceptibility function $chi^{(3)}$ of the driven ancilla. This susceptibility function provides a numerically efficient way of computing the cavity Kerr particularly for systems with many cavity modes controlled by a single transmon. It also serves as a diagnostic tool for identifying undesired drive-induced multiphoton resonance processes. Lastly, we show that by judiciously choosing the drive amplitude, a single off-resonant transmon drive can be used to cancel the cavity self-Kerr nonlinearity or the inter-cavity cross-Kerr. This provides a way of dynamically correcting the cavity Kerr nonlinearity during bosonic operations or quantum error correction protocols that rely on the cavity modes being linear.
The efficient simulation of quantum systems is a primary motivating factor for developing controllable quantum machines. For addressing systems with underlying bosonic structure, it is advantageous to utilize a naturally bosonic platform. Optical pho tons passing through linear networks may be configured to perform quantum simulation tasks, but the efficient preparation and detection of multiphoton quantum states of light in linear optical systems are challenging. Here, we experimentally implement a boson sampling protocol for simulating molecular vibronic spectra [Nature Photonics $textbf{9}$, 615 (2015)] in a two-mode superconducting device. In addition to enacting the requisite set of Gaussian operations across both modes, we fulfill the scalability requirement by demonstrating, for the first time in any platform, a high-fidelity single-shot photon number resolving detection scheme capable of resolving up to 15 photons per mode. Furthermore, we exercise the capability of synthesizing non-Gaussian input states to simulate spectra of molecular ensembles in vibrational excited states. We show the re-programmability of our implementation by extracting the spectra of photoelectron processes in H$_2$O, O$_3$, NO$_2$, and SO$_2$. The capabilities highlighted in this work establish the superconducting architecture as a promising platform for bosonic simulations, and by combining them with tools such as Kerr interactions and engineered dissipation, enable the simulation of a wider class of bosonic systems.
Qubit measurements are central to quantum information processing. In the field of superconducting qubits, standard readout techniques are not only limited by the signal-to-noise ratio, but also by state relaxation during the measurement. In this work , we demonstrate that the limitation due to relaxation can be suppressed by using the many-level Hilbert space of superconducting circuits: in a multilevel encoding, the measurement is only corrupted when multiple errors occur. Employing this technique, we show that we can directly resolve transmon gate errors at the level of one part in $10^3.$ Extending this idea, we apply the same principles to the measurement of a logical qubit encoded in a bosonic mode and detected with a transmon ancilla, implementing a proposal by Hann et al. [Phys. Rev. A textbf{98} 022305 (2018)]. Qubit state assignments are made based on a sequence of repeated readouts, further reducing the overall infidelity. This approach is quite general and several encodings are studied; the codewords are more distinguishable when the distance between them is increased with respect to photon loss. The tradeoff between multiple readouts and state relaxation is explored and shown to be consistent with the photon-loss model. We report a logical assignment infidelity of $5.8times 10^{-5}$ for a Fock-based encoding and $4.2times 10^{-3}$ for a QEC code (the $S=2,N=1$ binomial code). Our results will not only improve the fidelity of quantum information applications, but also enable more precise characterization of process or gate errors.
High-fidelity qubit measurements play a crucial role in quantum computation, communication, and metrology. In recent experiments, it has been shown that readout fidelity may be improved by performing repeated quantum non-demolition (QND) readouts of a qubits state through an ancilla. For a qubit encoded in a two-level system, the fidelity of such schemes is limited by the fact that a single error can destroy the information in the qubit. On the other hand, if a bosonic system is used, this fundamental limit could be overcome by utilizing higher levels such that a single error still leaves states distinguishable. In this work, we present a robust readout scheme, applicable to bosonic systems dispersively coupled to an ancilla, which leverages both repeated QND readouts and higher-level encodings to asymptotically suppress the effects of qubit/cavity relaxation and individual measurement infidelity. We calculate the measurement fidelity in terms of general experimental parameters, provide an information-theoretic description of the scheme, and describe its application to several encodings, including cat and binomial codes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا