ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that Morleys theorem on the number of countable models of a countable first-order theory becomes an undecidable statement when extended to second-order logic. More generally, we calculate the number of equivalence classes of $sigma$-projectiv e equivalence relations in several models of set theory. Our methods include random and Cohen forcing, Woodin cardinals and Inner Model Theory.
We examine topological dynamical systems on the Cantor set from the point of view of the continuous model theory of commutative C*-algebras. After some general remarks we focus our attention on the generic homeomorphism of the Cantor set, as construc ted by Akin, Glasner, and Weiss. We show that this homeomorphism is the prime model of its theory. We also show that the notion of generic used by Akin, Glasner, and Weiss is distinct from the notion of generic encountered in Fraisse theory.
Work of Eagle, Farah, Goldbring, Kirchberg, and Vignati shows that the only separable C*-algebras that admit quantifier elimination in continuous logic are $mathbb{C},$ $mathbb{C}^2,$ $M_2(mathbb{C}),$ and the continuous functions on the Cantor set. We show that, among finite dimensional C*-algebras, quantifier elimination does hold if the language is expanded to include two new predicate symbols: One for minimal projections, and one for pairs of unitarily conjugate projections. Both of these predicates are definable, but not quantifier-free definable, in the usual language of C*-algebras. We also show that adding just the predicate for minimal projections is sufficient in the case of full matrix algebras, but that in general both new predicate symbols are required.
The Omitting Types Theorem in model theory and the Baire Category Theorem in topology are known to be closely linked. We examine the precise relation between these two theorems. Working with a general notion of logic we show that the classical Omitti ng Types Theorem holds for a logic if a certain associated topological space has all closed subspaces Baire. We also consider stronger Baire category conditions, and hence stronger Omitting Types Theorems, including a game version. We use examples of spaces previously studied in set-theoretic topology to produce abstract logics showing that the game Omitting Types statement is consistently not equivalent to the classical one.
We consider model-theoretic properties related to the expressive power of three analogues of $L_{omega_1, omega}$ for metric structures. We give an example showing that one of these infinitary logics is strictly more expressive than the other two, bu t also show that all three have the same elementary equivalence relation for complete separable metric structures. We then prove that a continuous function on a complete separable metric structure is automorphism invariant if and only if it is definable in the more expressive logic. Several of our results are related to the existence of Scott sentences for complete separable metric structures.
Answering a question of P. Bankston, we show that the pseudoarc is a co-existentially closed continuum. We also show that $C(X)$, for $X$ a nondegenerate continuum, can never have quantifier elimination, answering a question of the the first and third named authors and Farah and Kirchberg.
The only C*-algebras that admit elimination of quantifiers in continuous logic are $mathbb{C}, mathbb{C}^2$, $C($Cantor space$)$ and $M_2(mathbb{C})$. We also prove that the theory of C*-algebras does not have model companion and show that the theory of $M_n(mathcal {O_{n+1}})$ is not $forallexists$-axiomatizable for any $ngeq 2$.
We realize the Jiang-Su algebra, all UHF algebras, and the hyperfinite II$_{1}$ factor as Fraisse limits of suitable classes of structures. Moreover by means of Fraisse theory we provide new examples of AF algebras with strong homogeneity properties. As a consequence of our analysis we deduce Ramsey-theoretic results about the class of full-matrix algebras.
We study the saturation properties of several classes of $C^*$-algebras. Saturation has been shown by Farah and Hart to unify the proofs of several properties of coronas of $sigma$-unital $C^*$-algebras; we extend their results by showing that some c oronas of non-$sigma$-unital $C^*$-algebras are countably degree-$1$ saturated. We then relate saturation of the abelian $C^*$-algebra $C(X)$, where $X$ is $0$-dimensional, to topological properties of $X$, particularly the saturation of $CL(X)$.
We describe an infinitary logic for metric structures which is analogous to $L_{omega_1, omega}$. We show that this logic is capable of expressing several concepts from analysis that cannot be expressed in finitary continuous logic. Using topological methods, we prove an omitting types theorem for countable fragments of our infinitary logic. We use omitting types to prove a two-cardinal theorem, which yields a strengthening of a result of Ben Yaacov and Iovino concerning separable quotients of Banach spaces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا