ترغب بنشر مسار تعليمي؟ اضغط هنا

In this review we present the recent advances for calculations of the reactions $NNto NNpi$ using chiral effective field theory. Discussed are the next-to-next-to leading order loop contributions with nucleon and Delta-isobar for near threshold s-wav e pion production. Results of recent experimental pion-production data for energies close to the threshold are analyzed. Several particular applications are discussed: (i) it is shown how the measured charge symmetry violating pion-production reaction can be used to extract the strong-interaction contribution to the proton-neutron mass difference; (ii) the role of $NNto NNpi$ for the extraction of the pion-nucleon scattering lengths from pionic atoms data is illuminated.
We discuss the possibilities of producing the X(3872), which is assumed to be a D bar D^* bound state, in radiative decays of charmonia. We argue that the ideal energy regions to observe the X(3872) associated with a photon in e^+e^- annihilations ar e around the Y(4260) mass and around 4.45 GeV, due to the presence of the S-wave D bar D_1(2420) and D^* bar D_1(2420) threshold, respectively. Especially, if the Y(4260) is dominantly a D bar D_1 molecule and the X(3872) a D bar D^* molecule, the radiative transition strength will be quite large.
In recent years, high-accuracy data for pionic hydrogen and deuterium have become the primary source of information on the pion-nucleon scattering lengths. Matching the experimental precision requires, in particular, the study of isospin-breaking cor rections both in pion-nucleon and pion-deuteron scattering. We review the mechanisms that lead to the cancellation of potentially enhanced virtual-photon corrections in the pion-deuteron system, and discuss the subtleties regarding the definition of the pion-nucleon scattering lengths in the presence of electromagnetic interactions by comparing to nucleon-nucleon scattering. Based on the pi^{+/-} p channels we find for the virtual-photon-subtracted scattering lengths in the isospin basis a^{1/2}=(170.5 +/- 2.0) x 10^{-3} mpi^{-1} and a^{3/2}=(-86.5 +/- 1.8) x 10^{-3} mpi^{-1}.
We examine the quark mass dependence of the pion vector form factor, particularly the curvature (mean quartic radius). We focus our study on the consequences of assuming that the coupling constant of the rho to pions is largely independent of the qua rk mass while the quark mass dependence of the rho--mass is given by recent lattice data. By employing the Omnes representation we can provide a very clean estimate for a certain combination of the curvature and the square radius, whose quark mass dependence could be determined from lattice computations. This study provides an independent access to the quark mass dependence of the rho-pi-pi coupling and in this way a non-trivial check of the systematics of chiral extrapolations. We also provide an improved value for the curvature for physical values for the quark masses, namely <r^4> = 0.73 +- 0.09 fm^4 or equivalently c_V=4.00pm 0.50 GeV^{-4}.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا