ترغب بنشر مسار تعليمي؟ اضغط هنا

(abridged) We have obtained precise radial velocities for a sample of 373 G and K type giants at Lick Observatory regularly over more than 12 years. Planets have been identified around 15 giant stars; an additional 20 giant stars host planet candidat es. We investigate the occurrence rate of substellar companions around giant stars as a function of stellar mass and metallicity. We probe the stellar mass range from about 1 to beyond 3 M_Sun, which is not being explored by main-sequence samples. We fit the giant planet occurrence rate as a function of stellar mass and metallicity with a Gaussian and an exponential distribution, respectively. We find strong evidence for a planet-metallicity correlation among the secure planet hosts of our giant star sample, in agreement with the one for main-sequence stars. However, the planet-metallicity correlation is absent for our sample of planet candidates, raising the suspicion that a good fraction of them might indeed not be planets. Consistent with the results obtained by Johnson for subgiants, the giant planet occurrence rate increases in the stellar mass interval from 1 to 1.9 M_Sun. However, there is a maximum at a stellar mass of 1.9 +0.1/-0.5 M_Sun, and the occurrence rate drops rapidly for masses larger than 2.5-3.0 M_Sun. We do not find any planets around stars more massive than 2.7 M_Sun, although there are 113 stars with masses between 2.7 and 5 M_Sun in our sample (corresponding to a giant planet occurrence rate < 1.6% at 68.3% confidence in that stellar mass bin). We also show that this result is not a selection effect related to the planet detectability being a function of the stellar mass. We conclude that giant planet formation or inward migration is suppressed around higher mass stars, possibly because of faster disk depletion coupled with a longer migration timescale.
This work is part of an ongoing project which aims to detect terrestrial planets in our neighbouring star system $alpha$ Centauri using the Doppler method. Owing to the small angular separation between the two components of the $alpha$ Cen AB binary system, the observations will to some extent be contaminated with light coming from the other star. We are accurately determining the amount of contamination for every observation by measuring the relative strengths of the H-$alpha$ and NaD lines. Furthermore, we have developed a modified version of a well established Doppler code that is modelling the observations using two stellar templates simultaneously. With this method we can significantly reduce the scatter of the radial velocity measurements due to spectral cross-contamination and hence increase our chances of detecting the tiny signature caused by potential Earth-mass planets. After correcting for the contamination we achieve radial velocity precision of $sim 2.5,mathrm{m,s^{-1}}$ for a given night of observations. We have also applied this new Doppler code to four southern double-lined spectroscopic binary systems (HR159, HR913, HR7578, HD181958) and have successfully recovered radial velocities for both components simultaneously.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا