ترغب بنشر مسار تعليمي؟ اضغط هنا

We study zero-forcing detection (ZF) for multiple-input/multiple-output (MIMO) spatial multiplexing under transmit-correlated Rician fading for an N_R X N_T channel matrix with rank-1 line-of-sight (LoS) component. By using matrix transformations and multivariate statistics, our exact analysis yields the signal-to-noise ratio moment generating function (m.g.f.) as an infinite series of gamma distribution m.g.f.s and analogous series for ZF performance measures, e.g., outage probability and ergodic capacity. However, their numerical convergence is inherently problematic with increasing Rician K-factor, N_R , and N_T. We circumvent this limitation as follows. First, we derive differential equations satisfied by the performance measures with a novel automated approach employing a computer-algebra tool which implements Groebner basis computation and creative telescoping. These differential equations are then solved with the holonomic gradient method (HGM) from initial conditions computed with the infinite series. We demonstrate that HGM yields more reliable performance evaluation than by infinite series alone and more expeditious than by simulation, for realistic values of K , and even for N_R and N_T relevant to large MIMO systems. We envision extending the proposed approaches for exact analysis and reliable evaluation to more general Rician fading and other transceiver methods.
A variation of Zeilbergers holonomic ansatz for symbolic determinant evaluations is proposed which is tailored to deal with Pfaffians. The method is also applicable to determinants of skew-symmetric matrices, for which the original approach does not work. As Zeilbergers approach is based on the Laplace expansion (cofactor expansion) of the determinant, we derive our approach from the cofactor expansion of the Pfaffian. To demonstrate the power of our method, we prove, using computer algebra algorithms, some conjectures proposed in the paper Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants by Ishikawa, Tagawa, and Zeng. A minor summation formula related to partitions and Motzkin paths follows as a corollary.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا